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Prelimenaries

We will begin with a list of notation to minimize confusion throughout the document:

• The smash product of spectra will be denoted by ⊗.

• The mapping specrum will be denoted by Hom.

• The set of morphism of two spectra X and Y will be denoted by [X,Y ].

• The Eilenberg-MacLane spectrum associated with an abelian group A will be de-
noted by HA.

• The HA-homology of X will be denoted by A∗(X).

• The HA-cohomology of X will be denoted by A∗(X).

• The mod p Steenrod algebra will be denoted by Ap.

• The p-completion of a spectrum will be denoted by X∧
p .

• The p-adic integers will be denoted by Zp.

• The dual of a morphism f will be denoted by f∨.

• The morphism induced on homotopy groups by f will be denoted by f∗.

• The morphism induced on homology groups by f will be denoted by f∗.

• The morphism induced on cohomology groups by f will be denoted by f∗.

Introduction

The plan is as follows. We’ll start by constructing the classical Adams spectral sequence,
providing most of the proofs and many details along the way. To do this, we will introduce
Adams resolutions and demonstrate how they lead to an exact couple. From standard
homological algebra, it follows that this construction yields a spectral sequence. Afterward,
we’ll identify the E2-page of the spectral sequence and establish conditional convergence.
We’ll also briefly discuss the naturality of this spectral sequence.

In the second part of the talk, we will generalize the classical Adams spectral sequence to
a more general version that involves E-homology for some spectrum E satisfying specific
assumptions. Since the construction closely mirrors the classical case, we will provide
more of a sketch, omitting some details to focus on the key differences from the classical
sequence.

The whole document is a combination of the two sources [1] and [2].
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The Classical Case

Theorem 1 (Adams Spectral Sequence). Let X be a spectrum with π∗(X) bounded be-
low and (Fp)∗(X) of finite type. Then there is a spectral sequence E∗,∗

r with differentials

dr : E
s,t
r → Es+r,t+r−1

r , such that

Es,t
2 = Exts,tAp

((Fp)
∗(X),Fp) =⇒ πt−s(X

∧
p ).

Remark. For clarity, note that by ”finite type,” we mean as a graded module, i.e., finitely
many generators in each dimension. Also, Exts,tAp

((Fp)
∗(X),Fp) = ExtsAp

((Fp)
t(X),Fp).

Remark. Note that we are particularly interested in the case where X = S and p = 2, in
which case the theorem gives the following spectral sequence:

Es,t
2 = Exts,tA2

(F2,F2) =⇒ πt−s(S)∧2 ,

where we use the fact that (F2)
∗(S) = π−∗(Hom(S, HF2)) = π∗(HF2) = F2, and that

π∗(X
∧
p ) = π∗(X) ⊗ Zp = π∗(X)∧p under certain conditions on X, which are conveniently

satisfied by S.

Remark. In general, we often assume the condition that makes π∗(X
∧
p ) = π∗(X) ⊗ Zp =

π∗(X)∧p possible, and construct a spectral sequence converging to π∗(X) ⊗ Zp. This will
be discussed in more detail in a later talk.

Before jumping into the construction we will collect a few technical facts that we will need
throughout this section in a Proposition.

Proposition 2. Let X be a spectrum with π∗(X) bounded below and (Fp)∗(X) of finite
type. Then:

(i) (Fp)
∗(HFp) = Ap.

(ii) If K is a direct sum of suspensions of HFp bounded below and of finite type, then
π∗(K) is a graded Fp-vector space with one generator for each summand of K. More
precisely, π∗(K) = HomAp((Fp)

∗(K),Fp).

(iii) A map from X to K is equivalent to a collection of elements in (Fp)
∗(X) that is

bounded below and of finite type in the appropriate dimensions.

(iv) If a collection of elements in (Fp)
∗(X) that is bounded below and of finite type gener-

ates it as an Ap-module, then the corresponding map f : X → K induces a surjection
in cohomology.

(v) X ⊗ HFp is a direct sum of suspensions of HFp, with one summand for each Fp

generator of (Fp)
∗(X). (Fp)

∗(X ⊗ HFp) = (Fp)
∗(X) ⊗ Ap, and the map f : X =

X ⊗ S X⊗η−−−→ X ⊗HFp induces the Ap-module structure (Fp)
∗(X)⊗Ap → (Fp)

∗(X)
in cohomology. In particular, f∗ is surjective.
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Proof.

(i) Follows from previous talks.

(ii) We can write K =
⊕

iHFp[ni] by assumption. Then π∗(K) = π∗(
⊕

iHFp[ni]) =⊕
i π∗(HFp[ni]) =

⊕
i Fp, where the i-th summand in the latest sum lies in degree ni.

Thus, π∗(K) is indeed a graded Fp-vector space. The latter identification becomes
clear since we have (Fp)

∗(K) = π−∗(Hom(K,HFp)) = [S[−∗],Hom(K,HFp)] =
[K,HFp[∗]] = [

⊕
iHFp[ni], HFp[∗]] =

⊕
i[HFp[ni], HFp[∗]] =

⊕
iAp, with the i-

th summand in degree ni.

(iii) Notice that (Fp)
∗(X) = π−∗(Hom(X,HFp)) = [S[−∗],Hom(X,HFp)] = [X,HFp[∗]].

This shows that we can understand elements of the mod (p) cohomology of X as
maps X → HFp[∗]. The collection of elements X → HFp[ni] assembles into a map
X →

∏
iHFp[ni]. Now, recall that we always have a comparison map between the

coproduct and product in spectra. Furthermore, this map is an isomorphism if:

(a) the family of spectra over which we take the coproduct/product is finite.

(b) the family of spectra over which we take the coproduct/product consists of
Eilenberg-MacLane spectra in different dimensions.

These two facts together imply that we have
∏

iHFp[ni] =
⊕

iHFp[ni] = K, and
we obtain a map X → K. The other direction is similar. Furthermore, if the map
f : X → K corresponds to the collection {fi ∈ (Fp)

∗(X)}, then the induced map
f∗ : (Fp)

∗(K)→ (Fp)
∗(X) sends the i-th generator of

⊕
iAp to fi.

(iv) This follows directly from the above description of the correspondence.

(v) We have that (Fp)∗(X) = π∗(X ⊗ HFp) is a graded Fp-vector space. Hence, we
can pick a basis {fi}. Each fi can be represented by a map S[ni] → X ⊗ HFp.
Tensoring with the identity of HFp yields a map HFp[ni] → X ⊗HFp ⊗HFp, and
composing with the multiplication of the homotopy ring spectrum HFp yields a map
HFp[ni] → X ⊗ HFp. These maps assemble into a map

⊕
iHFp[ni] → X ⊗ HFp.

On homotopy groups, this maps the 1 in π∗(
⊕

iHFp[ni]) corresponding to HFp in
degree ni to fi and is thus an isomorphism, and by Whitehead’s theorem for spectra,
the claim follows. The second part follows from Hurewicz for spectra and point (iv).

Adams Resolution

After stating the main theorem, we will begin constructing the spectral sequence. To do
this, we will introduce Adams resolutions.

Definition 3. Let X be a spectrum with π∗(X) bounded below and (Fp)∗(X) of finite
type. A mod (p) Adams resolution for X is a diagram of spectra as follows:

· · · X2 X1 X0 X

K2 K1 K0

i1

j2

i0

j1 j0

where each Ks is a direct sum of suspensions of HFp that is bounded below and of finite
type, (js)

∗ is surjective, and Xs+1 is the fiber of js.
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Lemma 4. For a spectrum X such that π∗(X) is bounded below and (Fp)
∗(X) is of finite

type, an Adams resolution exists.

Proof. Suppose we have constructed the diagram up to Xs, i.e., we have the diagram:

Xs Xs−1 Xs−2

Ks−1 Ks−2

is−1 is−2

js−1 js−2

Define Ks = Xs ⊗HFp. Then, Proposition 2 (v) implies that Ks is a direct sum of shifts
of HFp that is bounded below and of finite type (this follows from the assumption that

the mod p homology is of finite type). Define js as the map f : X = X⊗S X⊗η−−−→ X⊗HFp,
where η denotes the unit of the homotopy ring spectrum HFp. Proposition 2 (v) shows
that (js)

∗ is surjective. Now, define Xs+1 as the fiber of js and continue inductively.

Remark. Using the long exact sequence in homotopy groups, one can verify that π∗(Xs) is
bounded below for all s. Additionally, using the long exact sequence in mod (p) homology,
one can verify that (Fp)∗(Xs) is of finite type for each s.

Construction

Suppose that X is a spectrum as above and that we have constructed an Adams resolution
for X. Now we will construct a spectral sequence from this Adams resolution. For this,
notice that we have long exact sequences:

π∗(Xs+1) π∗(Xs)

π∗(Ks)

(is)∗

(js)∗∂s,∗

for each s from the fibrations Xs+1 → Xs → Ks. Now define bigraded groups D1 and
E1 through Ds,t

1 = πt−s(Xs) and Es,t
1 = πt−s(Ks), respectively. Then the long exact

sequences translate to a diagram:

D1 D1

E1

i1

j1k1

i1 = (is)∗ : D
s+1,t+1
1 → Ds,t

1

j1 = (js)∗ : D
s,t
1 → Es,t

1

k1 = ∂s,t−s : E
s,t
1 → Ds+1,t

1

Notice that the exactness of the first diagrams translates to:

ker i1 = im k1, ker j1 = im i1, ker k1 = im j1.
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Hence, we have derived an exact couple from the Adams resolution. Constructing a
spectral sequence from this is standard homological algebra, which can be found in many
books, or alternatively in the Algebraic Topology 1 notes by Hausmann. Thus, we obtain
a spectral sequence {Er, dr}, where dr : Es,t

r → Es+r,t+r−1
r (i.e. the differentials are of

degree (r, r − 1)).

The expected abutment is the graded abelian group π∗(X) filtered by the image groups:

F s
∗ = im(is : π∗(Xs)→ π∗(X)),

where by abutment we mean the expected form of the E∞-page. This will be made more
precise later on. This concludes the existence part of Theorem 1. It remains to identify
the E2-page and show some form of convergence.

Differentials

Since we will need this later on, let us give a quick description of what the differentials
will look like. Consider the following diagram:

πt−s(Xs+2) πt−s(Ks+2) πt−s−1(Xs+3) πt−s−1(Ks+3)

πt−s(Xs+1) πt−s(Ks+1) πt−s−1(Xs+2) πt−s−1(Ks+2)

πt−s(Xs) πt−s(Ks) πt−s−1(Xs+1) πt−s−(Ks+1)

(is+2)∗

(js+2)∗

(is+1)∗

d2

∂s,t−s

d1

(js+1)∗

The dark blue arrows form an exact sequence induced by the fibration Xs+3 → Xs+2 →
Ks+2, the light blue arrows form an exact sequence induced by the fibration Xs+2 →
Xs+1 → Ks+1, and so on. By analyzing the E1-page given from the exact couple, one can
see that the ds,t1 -morphism is given by (js+1)∗ ◦ ∂s,t−s. By definition, we have

Es,t
2 = ker ds,t1 / im ds,t1 .

Now suppose that an element of Es,t
2 can be represented by x ∈ πt−s(Ks). Then we must

have ds,t1 (x) = 0, and hence we can lift ∂s,t−s(x) to πt−s−1(Xs+2) along (is+1)∗; i.e., we
find y ∈ πt−s−1(Xs+2) such that

(is+1)∗(y) = ∂s,t−s(x).

Now, ds,t2 (x) is given by (js+2)∗(y). This is clearly a d1-cycle, and it can easily be shown
to be well defined by a simple diagram chase.

If we now suppose that ds,t2 (x) = 0, i.e., x represents an element of Es,t
3 , we can lift y

to πt−s−1(Xs+3) along (is+2)∗ since (js+2)∗(y) = 0, and repeat the procedure to find the
image of ds,t3 .

Remark. Notice that the arising spectral sequence is first quadrant after a few suspensions.
Usually, one does a coordinate shift (s, t) 7→ (t − s, s) to the so-called Adams grading, in
which case all non-zero entries are over a line of slope 1. The degree of the differentials
becomes (−1, r).
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The E2-page

In this subsection, we are going to identify the E2-page of the spectral sequence constructed
above. This will be done in two parts. First, we will show that from an Adams resolution
of X, we obtain a free Ap-resolution of (Fp)

∗(X). Then we will use that to demonstrate
that the E1-page forms a complex that computes the relevant Ext term.

Lemma 5. For any Adams resolution of X as above, the diagram

· · · (Fp)
∗(Σ2K2) (Fp)

∗(ΣK1) (Fp)
∗(K0) (Fp)

∗(X)
∂2 ∂1 ε

is a free Ap-resolution of (Fp)
∗(X), where each of the modules is bounded below and of

finite type. Furthermore, we have ∂s = ∂∗(js)
∗.

Proof. By definition, the maps js : Xs → Ks induce surjective maps on mod (p) cohomol-
ogy. This implies that the long exact sequences on mod (p) cohomology, induced by the
fiber sequences Xs+1 → Xs → Ks, break into short exact sequences

0 (Fp)
∗−s−1(Xs+1) (Fp)

∗−s(Ks) (Fp)
∗−s(Xs) 0

0 (Fp)
∗(Σs+1Xs+1) (Fp)

∗(ΣsKs) (Fp)
∗(ΣsXs) 0

∂∗ (js)∗

∂∗ (js)∗

for each s, ∗. These splice together to form a long exact sequence

(Fp)
∗(Σ2X2) (Fp)

∗(ΣX1) (Fp)
∗(X)

(Fp)
∗(Σ2K2) (Fp)

∗(ΣK1) (Fp)
∗(K0)

∂∗ ∂∗(j2)∗

∂2

(j1)∗

∂1

(j0)∗

It remains to show that (Fp)
∗(Ks) is a free Ap-module, but we saw this in the proof of

Proposition 2 (ii). Thus, the long exact sequence above does indeed form a free Ap-
resolution of (Fp)

∗(X).

Let us now write P • = (Fp)
∗(Σ•K•) to clarify that P • ε−→ (Fp)

∗(X) is a free Ap-resolution.
Now we are ready to prove that the E2-page has the correct form. From the exact couple
above, we see that the E1-page of the spectral sequence takes the following form.

0 π∗(K0) π∗(ΣK1) π∗(Σ
2K2)

(j0∂0,∗)∗ (j1∂1,∗)∗

Proposition 2 (ii) implies that this is isomorphic to the complex

0 HomAp(P
0,Fp) HomAp(P

1,Fp) HomAp(P
2,Fp)

((j0∂0,∗)∗)∨ ((j1∂1,∗)∗)∨
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Hence, the E1-page is given by taking the resolution P • and applying HomAp(−,Fp). The

E2-page will be the cohomology of this complex, which computes Exts,tAp
((Fp)

∗(X),Fp) by
definition.

Remark. Notice that this, in particular, shows that the E2-page of the Adams spectral
sequence does not depend on the choice of resolution, while the E1-page did.

Naturality

It is a standard result in homological algebra that free (in fact, projective suffices) resolu-
tions are unique up to chain homotopy. This property carries over to spectral realizations;
specifically, we have a similar result for Adams resolutions. In this subsection, we will
state this result and derive the naturality of the Adams spectral sequence as a corollary.

Suppose we have the two Adams resolutions of the spectra X and Y which are bounded
below spectra with (Fp)∗(X) and (Fp)∗(Y ) of finite type:

· · · X2 X1 X0 X

K2 K1 K0

i1

j2

i0

j1 j0

· · · Y2 Y1 Y0 Y

L2 L1 L0

i1

j2

i0

j1 j0

with associated resolutions P • ε−→ (Fp)
∗(X) and Q• ε−→ (Fp)

∗(Y ). Then we have the
following result:

Theorem 6. With the setting as above, let f : X → Y be any map. Then there exists a
chain map g• : Q• → P • lifting f∗. Furthermore, there is a map of resolutions {fs : Xs →
Ys} lifting f and realizing g• in the sense that there is a homotopy commutative diagram

X2 X1 X

Y2 Y1 Y

f2 f1 f

and given any choice of commuting homotopies, the induced map of the cofibers gs : Ks →
Ls induces gs = (Σsgs)

∗ : Qs → Ps.

If ḡ• is a second chain map lifting f∗ and {f̄s} is a map of resolutions lifting f and realizing
ḡ•, then g• and ḡ• are chain homotopic, and {fs} and {f̄s} are homotopic in the sense
that the composites fs ◦ i and f̄s ◦ i are homotopic for all s.
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Proof. The first half of this proof is standard in homological algebra, while the second
part involves lifting the constructed chain homotopies to spectral realizations. The key
insight for the second part is that we have

[Ks, Ls] = HomAp((Fp)
∗(Ls), (Fp)

∗(Ks)),

which allows for the proper lifts. More details can be found in [2, Theorem 4.16].

Corrollary 7. Let f : X → Y be a map of bounded below spectra with (Fp)∗(X) and
(Fp)∗(Y ) of finite type. Then there is a map

f∗ : {Er(X), dr} → {Er(Y ), dr}

of Adams spectral sequences, given at the E2-level by the homomorphism

(f∗)∗ : Exts,tAp
((Fp)

∗(X),Fp)→ Exts,tAp
((Fp)

∗(Y ),Fp)

with the expected abutment homomorphism f∗ : π∗(X)→ π∗(Y ).

Definition 8. An element in Es,t
r is said to be of filtration s, total degree t − s, and

internal degree t. An element in F s
∗ ⊆ π∗(X), i.e., in the image of is : π∗(Xs)→ π∗(X), is

said to have Adams filtration ≥ s.

Theorem 9 (Filtration Theorem). Let {Xs} be and Adams resolution of X as above. A
class f ∈ π∗(X) has Adams filtration ≥ s if and only if the representing map f : S[n]→ X
can be factored as a composite of s maps

S[n] = Ys
zs−→ Ys−1

zs−1−−−→ · · · z2−→ Y1
z1−→ Y0 = X

where zu induces the zero map on mod (p) cohomology for all u. In particular F s
∗ ⊆ π∗(X)

is independent of the choice of Adams resolution.

Proof. Suppose f has Adams filtration ≥ s. Then, there exists a lift g : S[n] → Xs such
that is ◦ g = f . We define Yu = Xu and zu = iu−1 for 1 ≤ u ≤ s− 1, and let zs = is−1 ◦ g.

Conversely, given a factorization of f = z1 ◦ · · · ◦ zs as above, we define f0 : X → X to be
the identity. We then inductively find lifts fu : Yu → Xu such that the following diagram
commutes:

Ys Ys−1 Y1 X

Xs Xs−1 X1 X

zs

fs fs−1

z1

f1

is−1 i0

The diagram commutes because the obstruction to lifting fu−1 ◦ zu : Yu → Xu−1 over
iu−1 : Xu → Xu−1 is given by the homotopy class of the composite j ◦ fu−1 ◦ zu. This
obstruction is zero since (zu)

∗ = 0.

Let g = fs : S[n] → Xs. Then we have is ◦ g = f , which implies that f is of Adams
filtration ≥ s.
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Convergence

In this talk, we will only prove conditional convergence, the meaning of which will become
clear shortly. In the following discussions, we will establish convergence to the p-completion
of the homotopy of X based on this result. To do so, we first need to define our E∞-page
i.e., show that the Es,t

r become stable for large r.

By definition, we have Es,t
2 = Exts,tAp

((Fp)
∗(X),Fp) = 0 for s < 0. Consequently, this

also holds for Es,t
r for all r. In particular, if s < r, the image of dr in Es,t

r is trivial, as
Es−r,t−r+1

r = 0. Thus, Es,t
r is a subgroup of Es,t

r+1. We can then define

Es,t
∞ =

⋂
r>s

Es,t
r .

With that established, we are ready to state our conditional convergence result.

Theorem 10. Let X be a spectrum as above with Adams resolution {Xs} such that
lim←−Xs = ∗. Then Es,t

∞ is the subquotient F s
t−s/F

s+1
t−s of πt−s(X), and

⋂
F s
∗ = 0, where F s

∗
is defined as above.

Proof. First, notice that since lim←−Xs = ∗, the Milnor lim←−
1 sequence implies that lim←−π∗(Xs) =

∗. This also implies that the intersection vanishes.

We will now use the description of the differentials we discussed earlier. Recall the diagram:

πt−s(Xs+2) πt−s(Ks+2) πt−s−1(Xs+3) πt−s−1(Ks+3)

πt−s(Xs+1) πt−s(Ks+1) πt−s−1(Xs+2) πt−s−1(Ks+2)

πt−s(Xs) πt−s(Ks) πt−s−1(Xs+1) πt−s−1(Ks+1)

i∗s+2

j∗s+2

i∗s+1

j∗s

d2

∂s,t−s

d1

j∗s+1

For the identification of Es,t
∞ , let x ∈ Es,t

∞ be a nonzero class. Since dr(x) = 0, we know that
∂s,t−s(x) can be lifted to πt−s−1(Xs+r+1) for all r. Thus, ∂s,t−s(x) ∈ lim←−πt−s−1(Xs+r) = 0.
Therefore, we conclude that ∂s,t−s(x) = 0, and by exactness, we can write x = (js)

∗(y) for
some y ∈ πt−s(Xs).

It suffices now to show that y has a nontrivial image in πt−s(X). Suppose, for contra-
diction, that it does not. Let r be the largest integer such that y has a nontrivial image
z ∈ πt−s(Xs−r+1). Then z = ∂s−r,t−s(w) for some w ∈ πt−s(Ks−r), and dr(w) = x, which
contradicts the nontriviality of x.
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Example

Let us consider a simple example. Suppose X = HZ. The fundamental cohomology class
induces a map i : HZ → HFp with i∗ being surjective. The fiber of i is also HZ, and
the inclusion map j : HZ→ HZ has degree p. Therefore, we obtain an Adams resolution
where Xs = HZ and Ks = HFp for all s. The map HZ = Xs → X0 = HZ has degree ps.
Consequently, we have

Es,t
1 =

{
Fp if t = s,

0 if t ̸= s.

For degree reasons, there are no nontrivial differentials, so the spectral sequence collapses,
yielding E∞ = E1. Hence, E

s,s
∞ = Fp = F s

0 /F
s+1
0 .
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The General Case

In this section, we aim to generalize the construction from the previous section by replacing
the mod (p) Eilenberg-MacLane spectrum with a more general spectrum E, where the
prime example is the Brown–Peterson spectrum BP . Our goal is to replicate the previous
results using E-cohomology for a given spectrum E, rather than HFp. Specifically, for a
spectrum X, we want an E2-page that can be computed in terms of E∗(X) as a module
over E∗(E) and that converges to the homotopy groups of an E-local version of X in a
meaningful way. Naturally, certain restrictions on E are required for this approach, which
we will address here.

Experience suggests that dualizing the setup is wise; that is, we should consider E∗(X) as
a comodule over E∗(E). With these considerations in mind, let us state the main theorem
and discuss how it differs from the previous section.

Theorem 11. Let E be an Adams-type homotopy ring spectrum and X a spectrum. Then
there exists a spectral sequence E∗,∗

r with differentials dr : E
s,t
r → Es+r,t+r−1

r such that

Es,t
2 = Exts,tE∗(E)(E∗(S), E∗(X)) =⇒ πt−s(X

∧
E) := Tot(X ⊗ E⊗(•+1)),

where X∧
E denotes the nilpotent E-completion of X.

Remark. Notice that Theorem 1 corresponds to the special case where E = HFp. In
particular, for spectra X with π∗(X) bounded below and (Fp)∗(X) of finite type, there
exists an equivalence between the nilpotent HFp-completion and the usual p-completion

of X, i.e., X∧
p

≃−→ X∧
HFp

.

Remark. In this discussion, we will not go into the precise definition of X∧
E . It suffices to

note that, in almost all cases of interest, there exists a suitable model for X∧
E , which can

be easily identified.

Adams-Type Ring Spectrum

We will briefly outline the assumptions that make E an Adams-type homotopy ring spec-
trum. These assumptions may initially seem somewhat mysterious but will become clearer
as we proceed. Notably, these properties should be essential features of HFp that allow
for the constructions in the previous section.

(a) E is a homotopy-commutative ring spectrum.

(b) E is connective, meaning πr(E) = 0 for r < 0.

(c) The map µ∗ : π0(E) ⊗ π0(E) → π0(E), induced by the multiplication µ, is an iso-
morphism.

(d) E is flat; that is, E∗(E) is flat as a left module over π∗(E).

(e) Let θ : Z → π0(E) be the unique ring homomorphism, and let R ⊆ Q denote the
largest subring to which θ extends. Then R∗(E) is finitely generated over R.

These assumptions are crucial for two main purposes. First, they allow us to replicate
arguments from the previous section, such as Adams resolutions and the identification of
the E2-page. Second, they ensure the existence of an E-nilpotent completion, which is
essential for the convergence of the spectral sequence.
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Let us discuss the conditions briefly. The first assumption is necessary in the next subsec-
tion to establish that (π∗(E), E∗(E)) forms a Hopf algebroid, which enables E∗ to function
as a functor to left E∗(E)-comodules. The fourth assumption is required for performing
the homological algebra needed to describe the E2-page. Notably, the spectral sequence
would still maintain the desired convergence properties even without this fourth assump-
tion. In this discussion, we will primarily rely on these two assumptions, while the others
primarily contribute to constructing an E-nilpotent completion of a spectrum X and to
the convergence proof.

Proposition 12. The spectra MU , BP , and HFp satisfy the assumptions listed above.

Remark. The spectra HZ, bo, and bu do not satisfy the fourth assumption. In these cases,
E ⊗ E is not a direct sum of suspensions of E. However, they do satisfy the other four
assumptions, allowing us to still obtain a convergent spectral sequence.

E∗(E), E∗(X), and Ext

In this subsection, we construct the necessary structure on π∗(E), E∗(E), and E∗(X).
Specifically, we will construct the maps that make (π∗(E), E∗(E)) into a Hopf algebroid
and E∗(X) into a left E∗(E)-comodule. This mirrors the case E = HFp, where (π∗(HFp) =
Fp, (Fp)∗(HFp) = A∨

p ) forms a Hopf algebra (i.e., a Hopf algebroid with a single object),
and (Fp)

∗(X) is an (Fp)
∗(HFp) = Ap-module, or equivalently, (Fp)∗(X) is a (Fp)∗(HFp) =

A∨
p -comodule.

To construct (π∗(E), E∗(E)) as a Hopf algebroid and E∗(X) as an E∗(E)-comodule, we
require the following structure maps:

• The left unit/source map, ηL : π∗(E)→ E∗(E):
The left π∗(E)-module structure on E∗(E) (which is flat by assumption (d)) is in-
duced by the map E ⊗ η : E = E ⊗ S→ E ⊗ E. We define ηL to be this map.

• The right unit/target map, ηR : π∗(E)→ E∗(E):
The right π∗(E)-module structure on E∗(E) is induced by the map η ⊗ E : E =
S⊗ E → E ⊗ E. We define ηR to be this map.

• The coproduct/composition map, ∆: E∗(E)→ E∗(E)⊗π∗(E) E∗(E):
If we set X = E in the definition of the map ψ below, we obtain ∆: E∗(E) →
E∗(E)⊗π∗(E) E∗(E).

• The counit/identity map, ε : E∗(E)→ π∗(E):
The map ε : E∗(E)→ π∗(E) is induced by the multiplication map µ : E ⊗ E → E.

• The conjugation/inverse map, c : E∗(E)→ E∗(E):
The conjugation map c : E∗(E) → E∗(E) is induced by permuting the factors in
E ⊗ E → E ⊗ E.

• The comodule map, ψ : E∗(X)→ E∗(E)⊗π∗(E) E∗(X):
The map E ⊗ η ⊗ X : E ⊗ X = E ⊗ S ⊗ X → E ⊗ E ⊗ X induces ψ : E∗(X) →
π∗(E⊗E⊗X) = E∗(E)⊗π∗(E)E∗(X), where we use Lemma 14 for the last equality.

Proposition 13. The pair (π∗(E), E∗(E)) with the structure maps described above forms
a Hopf algebroid, and E-homology is a functor to the category of left E∗(E)-comodules,
which in this case is abelian.
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Lemma 14. The map (E⊗E)⊗ (E⊗X) = E⊗ (E⊗E)⊗X E⊗µ⊗X−−−−−→ E⊗E⊗X induces
an isomorphism E∗(E)⊗π∗(E) E∗(X)→ π∗(E ⊗ E ⊗X).

Proof. The result is straightforward for X = S[n]. It follows for finite spectra by induction
on the number of cells using the 5-lemma, and for arbitrary X by passing to direct limits.

E-Adams Resolution

We now define the E∗-Adams resolution for a spectrum X. As the main theorem of this
section, we need to reformulate it to fit our new setting.

Definition 15. An E∗-Adams resolution for X is a diagram

· · · X2 X1 X0 X

K2 K1 K0

i1

j2

i0

j1 j0

such that for all s ≥ 0, the following conditions hold:

(i) Xs+1 is the fiber of js.

(ii) E⊗Xs is a retract of E⊗Ks, meaning there exists a map hs : E⊗Ks → E⊗Xs such
that hs ◦ (E ⊗ js) = id. In particular, (js)∗ : E∗(Xs)→ E∗(Ks) is a monomorphism.

(iii) Ks is a retract of E ⊗Ks. In particular, π∗(Ks)→ E∗(Ks) is a monomorphism.

(iv) Extt,uE∗(E)(E∗(S), E∗(Ks)) =

{
πu(Ks) if t = 0

0 else

The first three conditions are in there to mirror the definiton of the standard Adams
resolution. Notably, while in the earlier setting, we required js to induce a surjective
map on cohomology, here we instead require a monomorphism on homology, reflecting our
dualized setting. More specifically the first conditions allows for the construction of the
spectral sequence as befor. The second and third condition will help to prove naturaility of
the spectral sequence. The fourth condition ensures that the resulting resolution of E∗(X)
serves to identify the E2-page as before, by guaranteeing that E∗(Ks) forms a projective
resolution.

Lemma 16. For a spectrum X, an E∗-Adams resolution exists.

Proof. We proceed inductively. As before, assume that the resolution has been constructed
up to Xs. Then, set Ks = E ⊗Xs and let Xs+1 be the fiber of η ⊗Xs : Xs = S ⊗Xs →
E ⊗Xs = Ks. Since E is a ring spectrum, it is a retract of E ⊗ E, and thus E ⊗Xs is a
retract of E⊗Ks = E⊗E⊗Xs. Being an E-module spectrum, E⊗Ks is also a retract of
E. Finally, we have E∗(Ks) = E∗(E)⊗π∗(E) E∗(Xs), and the desired form of Ext follows
from the previous discussions.
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Definition 17. The E∗-Adams resolution constructed in the proof above is called the
canonical E∗-Adams resolution.

Funfact. The E1-page of the Adams spectral sequence associated with the canonical E∗-
Adams resolution is the cobar complex C∗(E∗(X)).

Construction

With all of this groundwork, we can now prove Theorem 11. This proof will proceed
quickly, as we have set up everything to allow for a repetition of the arguments from the
previous section in an analogous way.

We begin by constructing an exact couple from the Adams resolution, as before. Following
the approach of Section 1, this leads to a spectral sequence with differentials of degree
(r, r − 1) and expected abutment F s

∗ = im(is : π∗(Xs)→ π∗(X)).

We can identify the E2-page with a similar strategy. The long exact sequences in E-
homology associated with the fibrationsXs+1 → Xs → Ks reduce to short exact sequences,
as (js)∗ is a monomorphism by the definition of an E∗-Adams resolution. These short exact
sequences splice together to form a long exact sequence:

0→ E∗(X)→ E∗(K0)→ E∗(ΣK1)→ · · ·

The fourth condition in the definition of E∗-Adams resolutions implies that Es,t
1 = πt−s(Ks) =

Ext0,−s
E∗(E)(E∗(S), E∗(Ks)) = Ext0E∗(E)(E∗(S), E∗(Σ

sKs)). Therefore, the E1-page takes the
form

Ext0E∗(E)(E∗(S), E∗(K0))→ Ext0E∗(E)(E∗(S), E∗(ΣK1))→ · · ·

Consequently, the E2-page is the cohomology of this complex, which corresponds to the
desired Ext-term, as discussed previously [1, A1.2.4].

Furthermore, we can prove conditional convergence in exactly the same way as before.
When we replace X with X∧

E , this actually results in full convergence, as we can take an
E∗-Adams resolution satisfying lim←−Xs = ∗. Upon establishing naturality, this replacement
is valid because X → X∧

E induces an isomorphism in E-homology.

Naturality can be established as follows. We construct a map of spectral realizations
inductively. Let {Xs} be an arbitrary E∗-resolution of X and let R0 be the canonical
one. Define Rn = {Xn

s } where Xn
s = Xs and Kn

s = Ks for s < n, while Kn
s = E ⊗ Xn

s

for s ≥ n. Then R∞ represents the arbitrary resolution, and we construct an equivalence
between R0 and R∞ by establishing equivalences between Rn and Rn+1 for all n. To do
this, it suffices to construct maps between Ks and E ⊗Xs compatible with the map from
Xs. By definition, Ks and E ⊗Xs are both retracts of E ⊗Ks, yielding a commutative
diagram:

Xs Ks

E ⊗Xs E ⊗Ks E ⊗Xs

Ks

in which the horizontal and vertical compositions are identities. It follows that the diagonal
maps are the ones we seek.
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To conclude, we restate the Filtration Theorem in this general setting. The proof follows
in a similar manner as before.

Theorem 18 (Filtration Theorem). An element f ∈ π∗(X) has Adams filtration ≥ s if
and only if the map f can be factored into s maps, each of which becomes trivial after
smashing the target with E.

Nilpotent E-Completion

Here, I will briefly present some essential facts about X∧
E , the nilpotent E-completion of

X. First, I will provide a definition of nilpotent E-completion that is particularly useful
in our context. Then, I will state a proposition that demonstrates how, in most cases, we
can find a suitable model for X∧

E , although we will omit the proof.

Definition 19. An E-completion X∧
E of X is a spectrum equipped with a map X →

X∧
E that induces an isomorphism in E-homology and ensures that X∧

E has an E∗-Adams
resolution {Xs} with lim←−Xs = ∗.

This definition becomes particularly useful when we recall the conditional convergence
theorem. In fact, it is precisely this reason that allows us to converge to the homotopy
groups of the nilpotent E-completion of X rather than merely to the homotopy groups of
X, since for a general X, such a resolution does not always exist. This consideration also
motivated our earlier replacement of X with X∧

p . Finally, we will outline models for X∧
E

that are relevant to our needs.

Proposition 20. If X is a connective spectrum and E is an Adams-type ring spectrum
then an nilpotent E-completion of X is given by

X∧
E =


XQ if π0(E) = Q
X(p) if π0(E) = Z(p)

X if π0(E) = Z
X∧

p if π0(E) = Fp and πn(X) is finitely generated for all n
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