BONN INTERNATIONAL GRADUATE SCHOOL OF MATHEMATICS

A motivic approach to equivariant synthetic spectra

Lucas Piessevaux

Advisor: Prof. Dr. Markus Hausmann

Background on motivic spectra
Many fundamental invariants of smooth schemes over a base scheme B satisfy the following properties: 1. descent for the Nisnevich topology, 2. \mathbb{A}^1 -homotopy invariance: their value on X is the same as on $\mathbb{A}^1 \times X$, 3. projective bundle formulas that relate their value on $\mathbb{P}^1 \times X$ and X . These are therefore naturally represented in the category of motivic spectra over B defined as $\mathrm{SH}(B) = \mathrm{Shv}_{\mathrm{Nis},\mathbb{A}^1}(\mathrm{Sm}_B; \mathrm{Ani})_*[(\mathbb{P}^1)^{\otimes -1}].$ There exists an equivariant analogue of this construction ([Hoy17]); if G is a sufficiently nice group scheme we may consider the site of smooth B -schemes with G -actions and construction $\mathrm{SH}^G(B) = \mathrm{Shv}_{\mathrm{Nis},\mathbb{A}^1}(\mathrm{Sm}_B^G; \mathrm{Ani})_*[(\mathrm{Th}(\mathcal{E}))^{\otimes -1} \mid \mathcal{E} \in \mathrm{Vect}_B^G]$ which one can equivalently think of as an extension of SH from schemes to sufficiently nice stacks including
which one can equivalently think of as an extension of SH from schemes to sufficiently nice stacks including $[B/C]$. Note that $SH(B)$ are all a scalar basis of SH from schemes to $Streme W$.
Equivariant algebraic cobordism
We construct $MGL_G \in SH^G(\mathbb{C})$ as the universal Thom spectrum, i.e. the colimit the Thom spectra of all rank zero equivariant virtual bundles over all smooth proper \mathbb{C} -schemes with <i>G</i> -action (cf. [BH21]):
$\operatorname{MGL}_G \simeq \lim_{\to} \operatorname{Th}_X(\alpha) \simeq \lim_{\to} \Sigma^{-2\alpha, -\alpha} \operatorname{Th}_{\operatorname{Gr}_d(V_i)}(Q_d^{\iota}).$
• This satisfies a sort of pre-global functoriality in the group: if $f: [\mathbb{C}/H] \to [\mathbb{C}/G]$ is a map of quotient stacks, there exists a map
• This satisfies a sort of pre-global functoriality in the group: if $f: [\mathbb{C}/H] \to [\mathbb{C}/G]$ is a map of quotien stacks, there exists a map $\alpha_f \colon f^* \mathrm{MGL}_G \to \mathrm{MGL}_H$ which is an equivalence if f is representable (e.g. corresponds to a subgroup inclusion), this is enough to make the collection

• If G is embeddable, say μ_n or GL_1 , then we can construct cell structures on the Graßmannians –and therefore on MGL_{G^-} using only cells of the form Th(V) for V a vector bundle on $[\mathbb{C}/G]$ (i.e. a complex G-representation).

for all k > 0.

3. For an arbitrary prime p, the functor $SH(\mathbb{C}) \to Sp$ induced by $X \mapsto X(\mathbb{C})^{an}$ induces an equivalence

 $\operatorname{Pure}(\mu_1)/p \xrightarrow{\sim} \operatorname{Pure}(C_1)/p.$

 $\pi_{2w-k,w}$ MGL = 0

• The Graßmannian model endows this global group law with strong regularity properties which allow us to conclude

 $\pi_{2w,w}^{\mu_n} \mathrm{MGL}_{\mu_n} \cong \pi_{2w}^{C_n} \mathrm{MU}_{C_n},$

 $\pi_{2w-k,w}^{\mu_n} \mathrm{MGL}_{\mu_n} = 0$

for all k < 0.

Why do we care?

- As in the nonequivariant setting, categorifying the equivariant Adams–Novikov spectral has many **com-putational** applications.
- This reveals a deep connection between the notion of **evenness** and algebrogeometric phenomena over \mathbb{C} : the torsion information in the pure Tate spheres in (equivariant) motivic spectra over \mathbb{C} is determined by the complex spheres in (equivariant) spectra.
- The even filtration, which in particular generalises the motivic filtrations of [BMS19] and [BL22], naturally lives in Syn. Cyclotomic spectra can be fruitfully ([DHRY25]) described in terms of objects of $\operatorname{Sp}^{C_{p^{\infty}}}$, and their **equivariant even filtration** naturally lives in $\operatorname{Syn}^{C_{p^{\infty}}}$.
- Equivariant motivic spectra admit a notion of **equivariant norms** ([Bac22]), hence so do equivariant synthetic spectra under this equivalence. The Adams–Novikov filtration on the equivariant sphere spectrum can therefore be equipped with a highly structured equivariant multiplicative refinement.
- At more interesting groups, similar equivalences give rise to chromatic refinements of the **derived ge-ometric Satake equivalence** ([Dev23]).

References

- [Bac22] Tom Bachmann. Motivic spectral mackey functors. arXiv preprint arXiv:2205.13926, 2022.
- [BH21] Tom Bachmann and Marc Hoyois. Norms in motivic homotopy theory. Astérisque, 425, 2021.
- [BKWX22] Tom Bachmann, Hana Jia Kong, Guozhen Wang, and Zhouli Xu. The chow t-structure on the ∞-category of motivic spectra. Annals of Mathematics, 195(2):707–773, 2022.
- [BL22] Bhargav Bhatt and Jacob Lurie. Absolute prismatic cohomology. arXiv preprint arXiv:2201.06120, 2022.
- [BMS19] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Topological hochschild homology and integral p-adic hodge theory. Publications mathématiques de l'IHÉS, 129(1):199–310, 2019.
- [Bon10] Mikhail V Bondarko. Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general). Journal of K-theory, 6(3):387–504, 2010.
- [Dev23] Sanath K Devalapurkar. Chromatic aberrations of geometric satake over the regular locus. arXiv preprint arXiv:2303.09432, 2023.
- [DHRY25] Sanath Devalapurkar, Jeremy Hahn, Arpon Raksit, and Allen Yuan. Prismatization of commutative ring spectra (forthcoming), 2025.
- [Hau22] Markus Hausmann. Global group laws and equivariant bordism rings. Annals of Mathematics, 195(3):841–910, 2022.
- [Hoy17] Marc Hoyois. The six operations in equivariant motivic homotopy theory. Advances in Mathematics, 305:197–279, 2017.
- $[\mathrm{HP23}] \qquad \mathrm{Peter}~\mathrm{J}~\mathrm{Haine}~\mathrm{and}~\mathrm{Piotr}~\mathrm{Pstragowski}.~\mathrm{Spectral}~\mathrm{weight}~\mathrm{filtrations}.~arXiv~preprint~arXiv:2309.15072,~2023.$
- [HRW22] Jeremy Hahn, Arpon Raksit, and Dylan Wilson. A motivic filtration on the topological cyclic homology of commutative ring spectra. arXiv preprint arXiv:2206.11208, 2022.
- $[Pst23a] \qquad {\rm Piotr~Pstragowski.~Perfect~even~modules~and~the~even~filtration.~} arXiv~preprint~arXiv:2304.04685,~2023.$
- [Pst23b] Piotr Pstrągowski. Synthetic spectra and the cellular motivic category. Inventiones mathematicae, 232(2):553–681, 2023.

2025 Mathematisches Institut der Universität Bonn lucas@math.uni-bonn.de

Equivariant synthetic reconstruction (joint with Keita Allen)

In the equivariant world, the correct replacement for the notion of having an even cell structure is that of having a cell structure by **complex** representation spheres. We therefore define $\operatorname{Pure}(C_n) \subset \operatorname{Sp}^{C_n}$ to be the full subcategory on retracts of extensions of objects of the form $S^V \otimes (C_n/C_d)_+$ with V a complex representation, and set

$$\operatorname{Syn}^{C_n} = \operatorname{Fun}_{\operatorname{cof}}^{\oplus}(\operatorname{Pure}(C_n)^{\operatorname{op}}, \operatorname{Sp})$$

as usual. We can easily deduce the following.

structure with cells in $Pure(\mu_1)$ and furthermore

 $\pi_{2w,w}$ MGL $\cong \pi_{2w}$ MU,

• Syn^{C_n} admits a **t-structure** $\tau_{c\geq\star}$ coming from Sp giving rise to a filtered spectrum

$$\operatorname{fil}_{\star}^{\operatorname{ev}} \mathbb{1}_{C_n} = \Gamma(\mathbb{1}_{C_n}; \tau_{c \ge \star} \operatorname{map}(-, \mathbb{1}_{C_n})).$$

• More generally, one can evaluate at other orbits and representation spheres to obtain a functor

 $\operatorname{fil}_{\star}^{\operatorname{ev}} \colon \operatorname{Sp}^{C_n} \to (\operatorname{Sp}^{C_n})^{\operatorname{RU}(C_n)^{\leq}}, X \mapsto \{\Gamma((C_n/C_d)_+, \tau_{c \geq V} \operatorname{map}(-, X))\}_{d|n}$

which recovers the equivariant Adams-Novikov filtration.

On the motivic side, motivated by the cell structure on MGL_{μ_n} , we define $\mathrm{Pure}(\mu_n)$ to be the full subcategory of $\mathrm{SH}^{\mu_n}(\mathbb{C})$ on retracts of extensions of objects of the form $\mathrm{Th}(V) \otimes (\mu_n/\mu_d)_+$ and $\mathrm{SH}^{\mu_n}(\mathbb{C})^{\mathrm{cell}}$ to be the subcategory generated under colimits by these.

1. The vanishing result in MGL_{μ_n} formally gives us an equivalence

 $\operatorname{Mod}(\operatorname{SH}^{\mu_n}(\mathbb{C})^{\operatorname{cell}}; \operatorname{MGL}_{\mu_n}) \simeq \operatorname{Fun}^{\oplus}(\operatorname{Pure}(\mu_n)^{\operatorname{op}} \otimes \operatorname{MGL}_{\mu_n}, \operatorname{Sp})$

cf. the weight structure on MGL-motives ([BKWX22], [Bon10]).

2. The cell structure on MGL_{μ_n} allows us to descend this to an identification

$$\operatorname{SH}^{\mu_n}(\mathbb{C})^{\operatorname{cell}} \simeq \operatorname{Fun}_{\operatorname{cof}}^{\oplus}(\operatorname{Pure}(\mu_n)^{\operatorname{op}}, \operatorname{Sp})$$

with the full subcategory on functors satisfying the same condition as in the definition of Syn, cf. the heart structure of [HP23].

3. Using **isotropy separation** and the t-structure obtained from the expression above, one can prove that taking complex points induces an equivalence

$$\operatorname{Pure}(\mu_n)/p \xrightarrow{\sim} \operatorname{Pure}(C_n)/p$$

4. Using our computation of $\pi_{2*,*}^{\mu_n}$ MGL_{μ_n} we may deduce from this that both categories of perfect pure objects as well as their classes of cofibre sequences are equivalent mod p, so there is an equivalence

$$\operatorname{Syn}_p^{C_n} \simeq \operatorname{SH}^{\mu_n}(\mathbb{C})_p^{\operatorname{cel}}$$