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Abstract

We provide an overview of some recent work on the theory of deformations of stable homotopy theories,
as exemplified by the construction of synthetic spectra. We set up the∞-categorical machinery to define a
one-parameter deformation of homotopy theories, in the form of stable presentably symmetric monoidal
∞-categories. This notion of a deformation, inspired by observations from spectral algebraic geometry, is
related to other (equivalent) definitions of a deformation appearing in the literature such as [BHS20]. In
particular, we show how to determine the generic and special fibres of a deformation using a version of the
Schwede–Shipley theorem introduced in [Heg18]. Within this notion of deformations, filtered spectra arise
as the universal deformation, and we analyse their categorical properties, as well as prevalence in the theory
of deformations of homotopy theories. The primary example of in this work is that of synthetic spectra
as developed in [Pst18]. We elaborate on past work of Burklund–Hahn–Senger on showing that synthetic
spectra admit the structure of a deformation, and work out some explicit identifications that can be made
in this example, culminating in an explicit filtered model of a certain subcategory of synthetic spectra.
The deficit between synthetic spectra and this subcategory is quantified using the theory of symmetric
monoidal recollements of stable∞-categories.
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1 Introduction
A variety of modern advances on the Adams spectral sequence have taken place within the realm of
synthetic spectra. This flavour of homotopy theory, developed in [Pst18] and based on an Adams-type
homology theory, can be thought of as a certain deformation of the ∞-category of spectra Sp. Further,
the computational programme of Isaksen et al. in approaching the stable homotopy groups of spheres
using C-motivic homotopy theory turns out to admit an interpretation as a deformation as well. Both of
these examples, by work of [BHS20] and [Ghe+18] respectively, admit filtered models. That is, descriptions
of these deformed homotopy theories as modules in filtered spectra. Unifying this drive towards filtered
spectra is the folklore result that these deformations are in a sense parametrised by the spectral stack A1/G! ,
and that filtered spectra arise naturally as quasicoherent sheaves on this stack. This is made rigorous using
techniques from spectral algebraic geometry in [Mou21].

Inspired by this, we aim to give a definition of what a deformation of homotopy theories should be,
based on geometric intuition from op. cit. In fact, filtered spectra appear to play a key role in this definition.
However, the word deformation of homotopy theories has been floating around in the literature for a while
now, to varying levels of concreteness. Therefore, we focus on comparing our geometric definition of
deformations with other examples found in the literature. Most importantly, the notion of a deformation of
homotopy theories proposed in Appendix C of [BHS20]. As expected, these two models are equivalent, and
one can choose either of them to work with. In fact, we stress the importance of the identification of a certain
operator ! present in every deformed homotopy theory, called the thread operator. This operator shows up
naturally in the construction of synthetic spectra and "-complete C-motivic spectra, where it controls the
deformation structure.

Since synthetic spectra admit a reasonably simple definition, we have opted to focus on these as the
main example in this work. Especially since their deformation structure and its effects on computations in
synthetic spectra are well documented and have played key roles in modern developments, cf. [BHS19].
However, there are many more deformations out there, such as the "-complete C-motivic example, genuine
#2-equivariant spectra, etc. The hope of the author is that the framework established here can easily allow
for new deformations of homotopy theories to be constructed and described, either in concrete definitions
using families of dualisable objects and symmetric monoidal left adjoints, or even arising from spectral
algebraic geometry–the two are equivalent.

The organisation of this thesis is as follows: First, we lay down the prerequisites (Section 4) of axiomatic
stable homotopy theory, using stable presentably symmetric monoidal∞-categories as our objects of interest.
We assume that the reader is familiar with higher category theory up to the level that they are comfortable
with the construction of∞-operads, and we take this as our starting point. The contents of this section are
not intended to be original.

Next, we give an in depth analysis of the ∞-category of filtered spectra in Section 5. As stated earlier,
this plays an important role in the theory of deformations, and plays a central role in many computational
applications. In particular, we study filtered spectra as filtrations of spectra, as well as geometric objects:
quasicoherent sheaves on A1/G! . Finally, we give a description of a certain subcategory of filtered spectra
in terms of cochain complexes in spectra due to [Ari21]. The latter example is used as an example of a
deformation of homotopy theories, but its primary use–for defining a new t-structure on filtered spectra–
goes beyond the scope of this work.

In Section 6 we recall the definition and some characterisations of recollements of stable ∞-categories.
In particular, we refine to symmetric monoidal recollements using work of [Sha21]. These recollements
will show up naturally in the study of deformations, arising from a recollement on quasicoherent sheaves
associated to a closed-open decomposition of a spectral stack. In particular, they will end up allowing
us to decompose deformed homotopy theories into !-complete and !-invertible parts, with both of these
subcategories admitting more explicit descriptions in many cases.

Section 7 contains the theoretical meat of this work, including a recap of the geometry of the stack
A1/G! due to [Mou21]. Most importantly, it is in this section that we are able to give our definition of
what a deformation of homotopy theories should be. We immediately compare our definition with the
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aforementioned definition from [BHS20] and show that they are equivalent. The main result of this section
and this thesis is the identification of the generic and special fibres in a deformation of homotopy theories.
Indeed, the folklore definition of a deformation consists of some span of homotopy theories with the two
fibres lying under the deformed homotopy theory. We can now make this rigorous, using our description
of filtered spectra and tensoring up along the definition of deformations.

The following Section 8 is a recap of the work in [Pst18] and [BHS19] on synthetic spectra, their homotopy
theory, and different notions of completion internal to this ∞-category. In this rather technical section, we
set up all of the work that will make the description of synthetic spectra as a deformation rather simple.
Once again, we do not claim any originality for the results in this section

Finally, in Section 9, we assemble the work on describing synthetic spectra with the characterisations
of deformations from Section 7 to work out our primary example of a deformation. This will be rather
immediate, since the past two sections have been geared towards this application. Along with a comment
on cellularity conditions for synthetic spectra, the main result is then the filtered model for !-complete
synthetic spectra. This result appears in [BHS20], and we use this final section to work out the equivalence
given there, using our previous analysis of synthetic homotopy theory and deformations of homotopy
theories. Finally, to work out the deficit between the !-complete synthetic spectra and the total∞-category,
we use our section on recollements to reconstruct the entire ∞-category as a right lax limit of this filtered
model and the∞-category of spectra itself.

2 Acknowledgements
The author is grateful towards Gabriel Angelini-Knoll for suggesting the subject of synthetic spectra and
filtered spectra as a thesis project, as well as his patience in answering many questions on stable homotopy
theory and working out various ideas on deformations of homotopy theories. We would also like to thank
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structure as a deformation of spectra, Piotr Pstrągowski and William Balderrama for organising the eCHT
seminar on synthetic spectra without which most of this would have been impossible, and John Rognes
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3 Conventions and Notation
Unless stated otherwise, the word∞-category refers to an (∞, 1)-category, for which we use Lurie and Joyal’s
formalism of quasicategories, using [Lur09] and [Lur17] as the primary references. Following this, we
establish the following notational convention:

lim (homotopy) Limit
colim (homotopy) Colimit

S ∞-category of spaces
Sp ∞-category of spectra

map Mapping space in an∞-category
Map Mapping spectrum in an∞-category
P(C) ∞-category of presheaves of spaces on an∞-category C
Shv ∞-category of sheaves of spaces on a site C
よ Yoneda embedding

Fun ∞-category of functors
F∗ (Nerve of) the 1-category of finite pointed sets
C⊗ ∞-operad associated to a symmetric monoidal∞-category C

Mod(C, $) ∞-category of (right) modules over the E%-algebra $ in C.



4 PREREQUISITES 6

4 Prerequisites
The goal of this section is to set up all the prerequisites necessary to be able to make statements about stable
presentably symmetric monoidal∞-categories, also referred to as stable homotopy theories or noncommu-
tative stacks in this work. In particular, we will set up the notion of presentability, some constructions of
symmetric monoidal structures on presentable∞-categories and functor∞-categories, as well as the notion
of stability. The latter will be constructed internal to presentable ∞-categories, where it admits an elegant
description in terms of smashing localisations. This section is meant as a recap of some common categorical
machinery from homotopy theory, and is not meant to be a exhaustive or original discussion; the primary
sources will be cited in each section.

4.1 Day convolution
Many∞-categories arising in this work will admit a natural description as a functor∞-category, or perhaps
some full subcategory of the latter. In particular, this holds for ∞-categories of diagrams, (pre)sheaf ∞-
categories, etc. Given two ∞-categories C and D with D cocomplete, it is then natural to ask what kind of
symmetric monoidal structures can be put on the functor ∞-category Fun(C,D). In fact, there is a natural
choice for this monoidal structure called the Day convolution. This has the universal property that an
E∞-monoid for the Day convolution in Fun(C,D) corresponds to the datum of a lax monoidal functor from
C to D. In fact, in the case that D = S is the ∞-category of spaces, we obtain a nice interaction with the
theory of presheaves: The Day convolution structure on Fun(Cop , S) is universal with the property that the
Yoneda embedding

よ : C→ Fun(Cop , S)
is symmetric monoidal. The extension of the Day convolution to a complete ∞-operadic description for
∞-categories described here is due to Glasman in [Gla16]. The goal of this section is to describe this
construction, give some sketches of the corresponding proofs, and cite the main universal properties.

The setup for this construction involves two ∞-categories C and D, the latter having all colimits. We
equip them with a symmetric monoidal structure, encoded by coCartesian fibrations

"C : C⊗ → F∗ , "D : D⊗ → F∗.

The first step towards defining a symmetric monoidal ∞-category of functors from C to D is to define a
coCartesian fibration over F∗ encoding this. In fact, one can work backwards from the universal properties of
the Day convolution cited above (and with precedent in the 1-categorical setting, due to Day). In particular,
since we want commutative algebras in Fun(C,D) to be lax symmetric monoidal functors from C to D, and
one can identify the former with sections of its structure fibration down to F∗, let us define a simplicial set

˜Fun(C,D)⊗ by
FunF∗(& , ˜Fun(C,D)⊗) % FunF∗(C⊗' ,D⊗' ).

In this notation, ' : & → F∗ is some map of simplicial sets, and the fibres C⊗' are defined as

C⊗' := C ×"C ,F∗ ,' & ,

and similarly forD⊗' . It then suffices to show that the simplicial set over F∗ defined in this way actually defines
a symmetric monoidal∞-category to obtain an explicit construction of the Day convolution. However, this
is a little more subtle. Indeed, we have not incorporated the Segal condition of C and D, which tells us that
there are decompositions

C⊗〈%〉 % C% ,

and it turns out that ˜Fun(C,D)⊗ as defined above is only a locally coCartesian fibration over F∗. Indeed, this
construction works for all coCartesian fibrations, so one can predict that the right answer actually uses that
C⊗ and D⊗ are symmetric monoidal∞-categories. We see that there are a few more gaps to be filled in, and
it will be necessary to restrict to a subsimplicial set of the latter to make up for these.
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We omit the proof that the natural map

˜Fun(C,D)⊗ → F∗

is a locally coCartesian fibration, and instead refer to [Gla16].
Now, let us make the statement above more rigorous. We wanted the construction of the ∞-operad

encoding the Day convolution symmetric monoidal structure to encode the product decompositions of
∞-categories. Let us therefore begin by elaborating on this.

Recall that the product decomposition of a symmetric monoidal∞-category

C⊗〈%〉 % C%

is induced by the pushforward along the inert morphisms

"( : 〈%〉 → 〈1〉

picking out the element ( ∈ % as the preimage of 1. The product of these pushforwards on fibres is precisely
what induces the decomposition above. First, let us generalise 〈1〉 to a more general 〈!〉, for ! ≥ 1. Then a
morphism

) : 〈%〉 → 〈!〉
is determined by the preimages of every non-basepoint element of 〈!〉, i.e. the restriction

) | ) 1({(}): ) −1({(})→ {(} ⊂ 〈!〉,

equivalently encoded by an active morphism

)( : ) −1({(})→ 〈1〉 ! {∗, (}.

The remaining information in ) is then simply the preimage of the basepoint, i.e. the pointed finite set
encoding what is thrown away. We conclude that there is a decomposition

F∗/〈!〉 % (Fact
∗/〈1〉)! ⊗ F∗; ) ↦→ (( )()!(=1 , )

−1(∗)).

In particular, a symmetric monoidal∞-category C⊗ decomposes as

C⊗ ×F∗ F∗/〈!〉 % (C⊗ ×F∗ Fact
∗/〈1〉)! × C⊗ .

Setting ! = 0, 1 recovers the usual product decomposition. The upshot of this description is that it captures
decompositions along edges as well. Indeed, if we let ) : 〈%〉 → 〈!〉 be a morphism in F∗, viewed
alternatively as an element in the fibre over 〈%〉 of F∗/〈!〉 → F∗, or a morphism ) : Δ1 → F∗, allowing us to
construct

C⊗) = C⊗ ×"C ,F∗ , ) Δ
1

Now note that the right hand side of this expression is also the fibre over ) ∈ F∗/〈!〉 of C ×F∗ F∗/〈!〉 , so that
one can insert this into the product decomposition (taking fibres over ) on both sides) to obtain

C⊗) % (C⊗ ×F∗ F∗/〈!〉) ×#2 ,F∗/〈!〉 , ) Δ
0 ,

% ((C⊗ ×F∗ Fact
∗/〈1〉) ×#2 ,Fact

∗/〈1〉 , )
Δ0)! × C ×"C ,F∗ , ) −1(∗)→〈0〉 Δ

1 ,

%
!∏
(=1

C⊗$ )−1(()
× C⊗* )−1(∗)

,

where * ) −1(∗) is the unique morphism ) −1(∗) → 〈0〉 that shows up in the second line when one takes the
preimage over the basepoint. The map $ ) −1(() is the unique active map to 〈1〉 sending all non-basepoint
elements to 1.
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We can now define the symmetric monoidal∞-category Fun(C,D)⊗ with the Day convolution structure
as the subsimplicial set of ˜Fun(C,D)⊗ on vertices and edges that do have a product decomposition, i.e. we
want

Fun(C,D)⊗〈%〉([0]) =Fun(C,D)%

↩→Fun(C% ,D%) % Fun(C⊗〈%〉 ,D
⊗
〈%〉) % ˜Fun(C,D)⊗〈%〉([0]),

Fun(C,D)⊗) :〈%〉→〈!〉([1]) =
!∏
(=1

FunΔ1(C⊗
$ ) −1(() ,D

⊗
$ ) −1(()) × Fun1

Δ(C⊗* )−1(∗)
,D⊗* )−1(∗)

)

↩→Fun1
Δ(C⊗) ,D⊗) ) % ˜Fun(C,D)⊗ ) ([1]).

It is clear from these expressions that this really is the subsimplicial set on functors respecting the product
decomposition, and from the expression for the vertices, one sees that the underlying ∞-category of this
symmetric monoidal∞-category is precisely Fun(C,D).

Assuming that the tensor product of D commutes with colimits, one shows (cf. [Gla16]) that this object
defines a full subcategory, and is a coCartesian fibration over F∗, thus giving rise to the symmetric monoidal
∞-category Fun(C,D) of functors with the Day convolution as required.

The proof of the universal properties w.r.t lax monoidal functors and the symmetric monoidal Yoneda
embedding are proven in op. cit. as Proposition 2.12 and Section 3.

Finally, we apply Remark 2.2.6.15 and Example 2.2.6.17 in [Lur17] to obtain an explicit formula for the
Day convolution of two functors. In fact, this precisely mirrors the classical formula for Day convolution in
1-categories. Letting +, +′ be functors C→ D, we have the formula

(+ ⊗Fun(C,D) +′)(#) % colim
#0⊗C#1→#

+(#0) ⊗D +′(#1).

4.2 Presentable∞-categories
Most ∞-categories of interest to us are of a type called presentable ∞-categories, which are a convenient
setting for higher category theory. We will recall some of the basic theory of presentable∞-categories, as in
Chapter 5 of [Lur09] as the primary reference.

There are many different ways one can think about presentable∞-categories. In this section, we mostly
illustrate the idea that presentable∞-categories are generated under filtered colimits by some smaller, more
tractable subcategory.

The end result of this section is to construct an∞-category of presentable stable∞-categories, and recall
its symmetric monoidal structure.

4.2.1 Ind-completion and presheaves

To reify the picture of presentable∞-categories sketched above, we will first quantify the notion of a filtered
colimit completion, which is given by Ind-completion. Recall that for any ∞-category C, we defined the
∞-category of presheaves P(C) as the functor∞-category

P(C) := Fun(Cop , S),
which comes equipped with a Yoneda embedding

よ : C→ P(C).
This∞-category of presheaves can be regarded as the free colimit completion ofC. Indeed ([Lur09], Theorem
5.1.5.6) states that for any small∞-category C and∞-category D with small colimits, precomposition with
the Yoneda embedding induces an equivalence of∞-categories

FunL(P(C),D) ∼−→ Fun(C,D), (1)
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where the source is the ∞-category of functors that preserve small colimits. Our goal in this section is to
obtain a similar construction, where colimits are now replaced by filtered colimits.

Recall that any functor Cop → S can be unstraightened to obtain a fibration
∫
) → C. If we think of this

total ∞-category
∫
) as the diagram of which ) ∈ P(C) is the formal colimit, then restricting to presheaves

whose associated total ∞-category is filtered should recover the appropriate notion of Ind-completion. To
avoid set-theoretic difficulties, we will introduce a smallness condition, given by the notion of &-filtered
∞-category for some regular cardinal &.
Definition 4.1 ([Lur09] 5.3.1.7). an∞-category D is called &-filtered if for any &-small simplicial set , with
a map

" : ,→ D,

there exists an extension of " to the right cone of ,.
Note that when & = ', we refer to '-filtered ∞-categories simply as filtered ∞-categories etc. We are

now ready to define the Ind-completion.
Definition 4.2 ([Lur09] 5.3.5.1). Given a small ∞-category C and a regular cardinal &, we define Ind&(C)
to be the full subcategory of P(C) on the functors ) : Cop → S such that the total∞-category

∫
) → C in the

corresponding unstraightening is &-filtered.
In particular, one can consider the objects of P(C) in the image of the Yoneda embedding, i.e. of the form

よ(#) for # ∈ C. Since these unstraighten to the slice fibrations C/# → C, and the latter total ∞-category
is filtered for any & since it has a terminal object, we conclude that the Yoneda embedding factors through
the inclusion Ind&(C) → P(C). In fact, by ([Lur09] Proposition 5.3.5.3) this subcategory has all &-filtered
colimits.

We are interested in the way C is contained in Ind&(C) using the Yoneda embedding. It turns out that
every object in the image of the Yoneda embedding is in fact compact in the Ind-completion. Let us first
recall the notion of compactness
Definition 4.3 ([Lur09] 5.3.4.5). Let D be an ∞-category admitting &-filtered colimits (i.e. colimits of
diagrams out of &-filtered∞-categories). Then an object - of D is said to be &-compact if the corresponding
functor

mapD(- ,−) : Dop → S

preserves &-filtered colimits.
It is then rather immediate that any object of the formよ(#) in Ind&(C) is &-compact. Indeed, the functor

mapInd&(C)(よ(#),−) : Ind&(C)→ S

is nothing but evaluation at the object # by the Yoneda Lemma. Since filtered colimits in Ind&(C) can
be computed in the ambient ∞-category P(C), where they are computed levelwise, we conclude that this
functor commutes with &-filtered colimits as required.

We conclude with a concrete universal property of Ind-completion analogous to that of the presheaf
∞-category
Proposition 4.1 ([Lur09] 5.3.5.10). Let C be a small ∞-category, and D an ∞-category with &-filtered colimits.
Then composition with the Yoneda embedding induces an equivalence of∞-categories

Fun&-cont(Ind&(C),D) ∼−→ Fun(C,D),

where the source is the full subcategory on functors preserving &-filtered colimits.
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4.2.2 Accessibility and presentability

Having developed the theory of Ind-completions, i.e. filtered colimits completions of∞-categories, we can
now quantify what it means for an∞-category to be generated under filtered colimits by a set of (compact)
generators. This is the notion of an accessible∞-category
Definition 4.4 ([Lur09] 5.4.2.1). An∞-category C is said to be &-accessible for some regular cardinal & if
there exists a small∞-category C′ and an equivalence

Ind&(C′)
∼−→ C.

A functor is said to be &-accessible if it preserves &-filtered colimits.
If an ∞-category or functor is &-accessible for some &, we will just say that it is accessible. It is then

verified in [Lur09] Proposition 5.4.2.2 that this corresponds with our intuition about &-compact generation
under small &-filtered colimits.

An important class of accessible ∞-categories arises as presheaves on a small ∞-category. This is the
content of [Lur09] Proposition 5.2.5.12, which states that for any small ∞-category C, the subcategory of
&-compact objects in P(C) is equivalent to a small∞-category D, and is such that P(C) can be identified with
Ind&(D). If we set C to be Δ0, such that P(C) % S, we conclude that the∞-category of spaces is accessible.

Having defined accessible∞-categories, we can now come to the main definition of this section, namely
that of a presentable∞-category.
Definition 4.5 ([Lur09] 5.5.0.1). An accessible∞-category with all small colimits is called presentable.

Since colimits in functor∞-categories such as presheaf∞-categories are computed levelwise, and the∞-
category of spaces S has all small colimits, we obtain an important class of presentable∞-categories: namely
any presheaf ∞-category P(C) where C is a small ∞-category. In fact, by an observation of Simpson, all
presentable∞-categories arise as accessible localisations of such presheaf∞-categories, cf. [Lur09] Theorem
5.5.1.1.

Presentable ∞-categories enjoy a variety of nice properties, such as the adjoint functor theorem. Recall
that in (1, 1)-category theory, a functor admits a right adjoint if and only if it preserves small colimits.
This result does not generalise to arbitrary∞-categories, but it does hold for functors between presentable
∞-categories
Theorem 4.1 (Adjoint Functor Theorem, [Lur09] 5.5.2.9). Let + : C → D be a functor between presentable
∞-categories, then + has a right adjoint if and only if it preserves small colimits, and dually + has a left adjoint if and
only if it is accessible and preserves small limits.

This theorem will often be used explicitly to posit the existence of right or left adjoints to functors
pereserving small colimits resp. limits. This result allows us to construct ∞-categories of presentable
∞-categories, using left or right adjoint functors.

Definition 4.6 ([Lur09] 5.5.3.1). Given the ∞-category Ĉat∞ of not-necessarily-small ∞-categories, let us
consider the subcategories PrL and PrR whose objects are presentable∞-categories and whose morphisms
are functors that preserve small colimits resp. small limits, and are accessible in the latter case.

By the Adjoint Functor Theorem stated above, it is clear that these two∞-categories are anti-equivalent,
since the datum of a small-colimit preserving functor is the same as the datum of the left adjoint functor
when restricted to presentable∞-categories.

The goal of the remainder of this section is to equip PrL with some nice categorical structures, such as
internal mapping objects and a symmetric monoidal structure.

An immediate candidate for the internal mapping object between objects C and D in PrL is the full
subcategory FunL(C,D) ⊂ Fun(C,D) on small-colimit-preserving (i.e. left adjoint) functors. It turns out
that this is the correct notion, cf. [Lur09] Proposition 5.5.3.8, where it is shown that this subcategory is
presentable, hence can be considered as an object of PrL.
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Having constructed internal mapping objects, we now construct the symmetric monoidal structure on
PrL such that it becomes a closed symmetric monoidal∞-category. Consider a morphism C→ FunL(D, E)
in PrL. Viewing this as a morphism in the ambient ∞-category Ĉat∞, we can use the Cartesian closed
symmetric monoidal structure in the latter to see that the datum of such a morphism is equivalent to the
datum of a functor C ×D→ E which preserves colimits separately in each variable. If we tentatively let ⊗
denote the expected symmetric monoidal structure on PrL, then C ⊗ D should have the universal property
that a colimit-preserving functor out of it is equivalent to the datum of a functor out of C×D that preserves
colimits in each variable separately. We will now make this rigorous.
Proposition 4.2. The ∞-category PrL defined above has a symmetric monoidal structure, denoted ⊗, with the
universal property that small-colimit-preserving functors out of C ⊗ D are equivalent to functors out of C × D
preserving colimits in each variable separately.

The main reference for this construction is [Lur07], and we present a slight reformulation of the proof of
this statement in op. cit.

Proof. Recall that a symmetric monoidal∞-category is an∞-operad such that its structure morphism down
to the category of finite pointed sets F∗ is a coCartesian fibration. Now we know that Ĉat∞ has a symmetric
monoidal structure given by the Cartesian product, so that its∞-category of operators

" : Ĉat
×
∞ → F∗

forms a symmetric monoidal∞-category. Now consider the subcategory (PrL)⊗ of Ĉat
×
∞ such that

• Objects of (PrL)⊗ are tuples ({C(}(∈〈%〉◦ , 〈%〉) such that every C( is presentable, i.e. an object of PrL.
• A morphism

({C(}(∈〈%〉◦ , 〈%〉)→ ({D.} .∈〈!〉◦ , 〈!〉)
over ( : 〈%〉 → 〈!〉 lies in (PrL)⊗ if for every . in 〈!〉◦, the corresponding morphism

∏
(∈(−1(.)

C( → D.

preserves colimits in each variable separately.
It is clear that (PrL)⊗〈1〉 % PrL, so that this is a candidate for a symmetric monoidal structure on PrL. To prove
that the subcategory constructed above is part of the datum of a symmetric monoidal∞-category, we need
to show that the restriction

/ : (PrL)⊗ → Ĉat
×
∞ → F∗

is still a coCartesian fibration. We begin by showing that an edge 〈%〉 → 〈!〉 in F∗ can be lifted to a locally
/-coCartesian edge in (PrL)⊗ with fixed source. Note that the target of such a morphism would land in the
fibre

(PrL)⊗〈!〉 ⊂ (Ĉat
×
∞)〈!〉 % (Ĉat∞)! ,

so that we may reduce to the case where 〈!〉 = 1. This allows us to rewrite this question in a more obvious
way.

Given some lift of the source, i.e. an object of (PrL)⊗〈%〉 , which we can identify with a Cartesian product
C1 × · · · × C% of presentable∞-categories, can we find a functor

+ : C1 × · · · × C% → D

into a presentable ∞-category D which preserves small colimits in each variable separately, and which is
locally /-coCartesian, i.e. is such that for all presentable E, precomposition with + induces a homotopy
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equivalence between )FunL(D, E) and )FunL% (C1× · · ·×C% , E), where the latter is the (core of the)∞-category
of functors that preserve colimits in each variable separately1.

The answer to this question is positive, and such an object can be constructed explicitly by induction.
Since this object will be the tensor product of C1 , · · ·C% in the symmetric monoidal structure on PrL, we
pre-emptively denote it by C1 ⊗ · · · ⊗ C% It is clear that when % = 0 we can take D = S = P(Δ0) to be the
∞-category of spaces, so that the Yoneda embedding in equation 1 gives us the desired equivalence

FunL(S, E) % FunL(P(Δ0), E) % Fun(Δ0 , E).

If % = 1, there is nothing to prove, so we assume that % > 1. In that case we can apply the adjunction

FunL% (
%∏
(=1

C( , E) % FunL%−1(
%−1∏
(=1

C( ,FunL(C% , E))

coming from the Cartesian closed monoidal structure on Ĉat∞. Now note that the target FunL(C% , E) is
once again presentable, so that we can apply the induction hypothesis to see that precomposition with the
canonical morphism induces an equivalence

FunL% (
%∏
(=1

C( , E) % FunL(
%−1⊗
(=1

C( ,FunL(C% , E)).

When % = 2 we can work explicitly. We use the anti-equivalence between PrL and PrR to identify the
mapping object FunL(C2 , E) in PrL with the full subcategory on accessible functors in the mapping object
FunR(E, C2)op. The notation FunR denotes the full subcategory on functors that preserve all small limits.
We then obtain a chain of equivalences and an inclusion

FunL2(C1 × C2 , E) %FunL(C1 ,FunL(C2 , E)),
%FunL(C1 ,FunR(E, C2)op),
→FunL(C1 ,FunL(Eop , Cop

2 )),
%FunL2(C1 × Eop , Cop

2 ),
%FunL(Eop ,FunL(C1 , C

op
2 ))),

%FunL(Eop ,FunR(Cop
2 , C1)op),

%FunR(E,FunR(Cop
2 , C1))op ,

%FunL(FunR(Cop
2 , C1), E),

that identifies the source with the full subcategory on accessible functors in FunR(E,FunR(Cop
2 , C2))op. We

therefore define C1 ⊗ C2 := FunR(Cop
2 , C1). The fact that the latter is once again a presentable∞-category is

the content of [Lur07] Lemma 4.1.4, and essentially uses the remark above that any presentable∞-category
arises as a left exact localisation of an ∞-category of presheaves on a small ∞-category. Finally, for % > 2,
we identify (C1 ⊗ · · · ⊗ C%−1) with (C1 ⊗ · · · ⊗ C%−1) ⊗ C%−1 and apply the induction hypothesis.

We conclude that / : (PrL)⊗ → F∗ is a symmetric monoidal ∞-category whose underlying ∞-category
(PrL)⊗〈1〉 is PrL, and such that the operation ⊗ can be characterised by the desired universal property. !

Remark 4.1. The ∞-category PrL satisfies a number of closure properties that we will not prove here.
In particular, it is closed under localisations, i.e. a localisation of a presentable ∞-category is once again
presentable. Further, it is cotensored over Cat∞ in the obvious way, so that if C is presentable and & is any

1Since we are working in the (∞, 1)-category of (presentable) ∞-categories, we must take the core of mapping ∞-categories.
However, the proof below actually extends to an equivalence on mapping∞-categories.
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∞-category, the functor∞-category Fun(&, C) is once again presentable. In the next section 4.3, we will see
that the full subcategories PrL

∗ , PrL
St on pointed and stable objects satisfy the same closure properties. In fact,

we will often use these facts implicitly, assuming it is obvious that many functor ∞-categories into (point-
ed/stable) presentable∞-categories and their localisations are once again (pointed/stable) presentable.

4.3 Spectra and stabilisation
In this section, we will recall the definition of stable ∞-categories, and how they can be constructed in a
universal way using stabilisations. We will argue why the universal stable∞-category is the∞-category of
spectra Sp. The main references for this section are [Lur17] and [GGN15].
Definition 4.7. An ∞-category D is said to be pointed if it has a zero object, i.e. an object which is both
initial and final in D

The presence of a zero object in an ∞-category D allows us to consider the notion of fibre and cofibre
sequences in D. Indeed, if ) : 0 → 1 resp. 2 : 3 → 0 is a morphism in D, and 0 is a zero object of D, we
define its fibre fib( ) ) resp. cofibre cof(2) to the pullback resp. pushout

fib( ) ) 0 3 0

0 1 0 cof( ) ).

!
)

2

"

Being constructed as limits and colimits along a diagram containing a zero object (which is unique up to
contractible choice as a limit/colimit itself), we infer that fibres and cofibres–if they exist–are unique up to
equivalence. One can then consider a special class of pointed∞-categories, namely those where fibres and
cofibres all exist and agree. We come to the following definition:
Definition 4.8 ([Lur17], 1.1.1.9). A pointed ∞-category is said to be stable if all morphisms have fibres
and cofibres and these agree, in the sense that 3 → 0 → 1 is the upper right corner of a fibre diagram if
and only if it is the upper right corner of a cofibre diagram.

in fact, for a pointed ∞-category D, the requirement that D be stable is equivalent to the requirement
that it admits all finite limits and colimits, and that pushouts and pullbacks agree. This is the content of
[Lur17] Proposition 1.1.3.4.

Since we are primarily interested in presentable∞-categories, we immediately restrict to the presentable
case. We can then construct two full subcategories of PrL, denoted PrL

∗ and PrL
St respectively, on the pointed

resp. stable presentable ∞-categories. The goal of this section is to show that the inclusions of these full
subcategories are nice enough that they admit localisation functors going the other way, which one can view
as the corresponding universal constructions.

In fact, these localisations are of a special type called smashing localisations in [GGN15], whose definition
is recalled here.
Definition 4.9 ([GGN15] 3.2). A localisation 4 : D→ D of a symmetric monoidal∞-category D is called
a smashing localisation if it is given by tensoring 4(−) = − ⊗ 5 for some object 5 of D.

The condition that 4 be a localisation will force the object 5 to be an idempotent commutative algebra
object of D, and in fact establishes a correspondence between smashing localisations and such objects. As
shown in Section 3 of op. cit, these smashing localisations (where we now restrict to our objects of interest,
i.e. smashing localisations of the closed symmetric monoidal ∞-category PrL) enjoy a multitude of nice
properties, summarised in the following proposition.
Proposition 4.3 ([GGN15] 3.9). Let 4 : PrL → PrL be a smashing localisation. Let C and D be objects of PrL.
Then

• The natural map C→ 4C induces an equivalence

FunL(4C,D) ∼−→ FunL(C,D)
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wheneverD lies in the essential image of 4. If bothC andD are closed symmetric monoidal2, then this equivalence
refines to an equivalence on∞-categories of symmetric monoidal functors.

• If C is once again assumed to be closed symmetric monoidal, then 4C inherits a unique closed symmetric monoidal
structure such that C→ 4C is symmetric monoidal.

• The image 4PrL is equivalent to Mod(PrL; 4S).
Remark 4.2. Note that the first point of this proposition is a little stronger than simply a consequence of
the adjunction between tensoring with 4S and forgetting the 4S-module structure. The latter would induce
an equivalence on mapping spaces of left adjoint functors in the ∞-category PrL, while the first statement
actually gives an equivalence on functor categories, i.e. on the cotensors in the self-enriched ∞-category
PrL. The two are related to each other by taking the core of the cotensor to obtain the mapping space.

To apply this proposition, we will show that the formation of the ∞-category of pointed objects in
a presentable ∞-category is a smashing localisation. For the remainder of this section, C will denote a
presentable∞-category.

On the level of objects, we have good evidence towards this claim. Indeed, if we consider the tensor
product C ⊗ S∗, it is clear that this is an object of PrL

∗ . We therefore have a functor

− ⊗ S∗ : PrL → PrL
∗

which is our candidate for a smashing localisation. If it is a localisation, it is clear that it is smashing, being
defined as such. The former statement is equivalent to showing that S∗ is an idempotent commutative
algebra object of PrL, as remarked in [GGN15]. This is the content of [Lur17] Proposition 4.8.2.11, in which
S∗ is shown to have a closed symmetric monoidal structure with unit ,0 = ∗ 1 ∗, uniquely characterised
by the property that the unit map S → S∗ (explicitly given by adjoining a disjoint basepoint to a space) is
symmetric monoidal.

We conclude that PrL
∗ ⊂ PrL is a localising subcategory with corresponding smashing localisation given

by tensoring with the idempotent object S∗. Application of the proposition above then tells us that if D is a
pointed presentable∞-category, whence there is an equivalence

FunL(C ⊗ S∗ ,D) ∼−→ FunL(C,D).

The∞-category of pointed objects C ⊗ S∗ will henceforth be denoted by C∗.
The stable case is analogous, yet is less intuitive than the pointed case. We therefore reformulate the

stability condition for presentable∞-categories. In any pointed∞-category C, which will be assumed to be
presentable from now on, given an object 3 one can form pullback or pushout diagrams

Ω3 0 3 0

0 3 0 Σ3 .

!
"

These constructions can be promoted to adjoint endofunctors Σ 2 Ω of C following [Lur17] Remark 1.1.2.8,
called the suspension and loop functors respectively. We can then apply [Lur17] Proposition 1.4.2.11, which
tells us that a pointed presentable ∞-category is stable if and only if the loop functor associated to it is an
equivalence.
Remark 4.3. In fact, note that the construction of the suspension functor gives us a sort of triangulated
structure on a stable ∞-category, which will actually induce the structure of a triangulated category on its
homotopy category. Indeed, consider a pair of (co)fibre sequences

3 → 0 → 1,0 → 1→6 .

2A commutative algebra object in PrL corresponds to a symmetric monoidal ∞-category under the forgetful functor from PrL to
Cat∞, but the additional requirement that the tensor product preserves all small colimits in each variable guarantees that the resulting
∞-cat is closed symmetric monoidal, which we will also refer to as a presentably symmetric monoidal∞-category.
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These can be encoded in a pair of pushout diagrams

3 0 0

0 1 6 .
" "

But now one sees that the total square is a pasting of coCartesian squares ergo coCartesian itself, so that
6 % Σ3, and we see that the suspension should be thought of as inducing the shift on the triangulated
homotopy category of a stable ∞-category. In fact, we will frequently use the converse, which states that
if 6 % Σ3, whence the total square is biCartesian, then the left square being biCartesian implies that the
right square is biCartesian. This means that

3 → 0 → 1

is a fibre sequence if and only if
0 → 1→ Σ3

is a fibre sequence.
The functor taking a pointed presentable ∞-category to its stabilisation, i.e. the left adjoint to the

inclusion PrL
∗ ⊂ PrL

St admits an explicit description that also elucidates its relation with more classical or
intuitive notions of spectrum objects. For this, we will need to consider the ∞-category of finite spaces
denoted Sfin. This is defined as the ∞-category containing a terminal object ∗ and closed under finite
colimits. In fact, we will make use of its pointed version, denoted Sfin

∗ , which by the above discussion can
be obtained as

Sfin
∗ % Sfin ⊗ S∗.

The objects of this ∞-category admit the intuitive description of pointed finite spaces. In particular, it
contains the spheres ,% , % ≥ 0, since these are obtained from the terminal object ∗ using finite colimits
(adjoining a disjoint basepoint to obtain ,0, and then using suspensions to obtain ,% for % ≥ 1). This allows
us to define the∞-category of spectrum objects.
Definition 4.10. Let C be an ∞-category with finite limits, which will usually be an object of PrL

∗ . Then
one defines the∞-category of spectrum objects in C or the stabilisation of C as

Sp(C) := Exc∗(Sfin
∗ , C).

This is the full subcategory of Fun(Sfin
∗ , C) on functors which

1. are reduced, i.e. carry the final object ∗ of Sfin
∗ to a final object in C,

2. and are excisive, so that they send pushout squares in the source to pullback squares in the target.
This apparently involved construction can be seen to recover the classical notion of Ω-spectra using the

following heuristic. Since there is a pushout square of the form

,%−1 ∗

∗ ,%
"

witnessing that ,% is the suspension of ,%−1 for every % ≥ 1, then an object + of Sp(C) sends this puhsout
diagram to a pullback diagram

+(,%−1) ∗

∗ +(,%).

!
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Using the notation established above, this means that +(,%−1) % Ω+(,%). If C is the category of pointed
spaces, it is then clear that an object of Sp(S∗) can be seen as an∞-categorical version of an Ω-spectrum.

It is then standard to verify that the resulting∞-category is still presentable, cf. [Lur17] Remark 1.4.2.4
since it is an accessible localisation of its ambient functor∞-category. Furthermore, it is pointed and admits
finite limits.

The next step is to verify that the resulting ∞-category is actually an element of PrL
St, for which one

simply needs to verify that it is stable. As asserted above, it is sufficient to verify that the loop or suspension
functors of the pointed presentable ∞-category Sp(C) are equivalences. This is now immediate, since it is
clear the the endofunctor of Exc∗(Sfin

∗ , C) given by precomposition with the suspension Σ of finite pointed
spaces is inverse to the loop functor Ω intrinsic to this pointed∞-category with finite limits. Indeed, limits
commute with Cartesian squares and preserve zero objects, so that this loop functor is compute pointwise,
and it is then immediate from the previous paragraph that this is inverse to precomposition with Σ.
Remark 4.4. A particular upshot of the discussion above is that it endows stabilisation with a very concrete
universal property. Indeed, since stabilisation is a smashing localisation of PrL, we see that there is an
equivalence

PrL
St %Mod(PrL; Sp(S)),

where the algebra object we consider is the stabilisation of the presentable∞-category of spaces. The latter
is none other than Sp3. In fact, from this description we also see that stabilisation, i.e. tensoring with Sp is
left adjoint (in an enriched way) to the obvious forgetful functor

PrL
St → PrL ,

which can now be viewed as forgetting the Sp-module structure. This means that if D is an element of PrL
St

and C an element of PrL, there is an equivalence

FunL(C,D) % FunL(Sp(C),D).

Remark 4.5. The stabilisation of a pointed∞-category with finite limits can be done in greater generality,
but the upshot of working with presentable∞-categories right away is that one does not need to worry about
exactness. Indeed, in the more general setting, a functor between stable ∞-categories ought to preserve
(co)fibre sequences, to respect the suspension and loop functors, in analogy with an exact functor of abelian
categories. In the case of presentable∞-categories, we already restrict to left adjoints preserving all colimits
such as cofibre sequences, and there is no more restriction needed.

4.4 Monadic adjunctions of rigidly generated∞-categories
Many modern advances in homotopy theory and higher category theory appear to follow a pattern where
one can consider presentable stable ∞-caetgories as modules over stable presentably symmetric monoidal
∞-categories. Indeed, since PrL

St is symmetric monoidal, and stable presentably symmetric monoidal ∞-
categories correspond precisely to commutative algebra objects in this ∞-category, we see that this notion
can be made rigorous. In particular, by the above description of stabilisation as a smashing localisation,
we ought to think of Sp as the unit in PrL

St, and think of the theory of presentable stable ∞-categories as
Sp-linear category theory. This hints at some analogy towards the theory of abelian categories, each of them
being enriched in the universal abelian category ModZ of abelian groups. It is then natural to ask whether
the entire theory of abelian categories can be described entirely in terms of this universal abelian category.
In homological algebra, we have the classical Freyd–Mitchell embedding theorem (cf. [Gin05]).
Theorem 4.2 (Freyd–Mitchell). Let A be an abelian category. Then there exists a ring $ and a fully faithful exact
functor

A ↩→Mod$ %Mod(ModZ;$)
3Note that S is not pointed yet, but we omit the basepoint from the notation Sp(S) since it is obvious that one first needs to make

this into a pointed presentable∞-category before stabilising.
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embedding A exactly into the abelian category of $-modules. Further, this embedding is essentially surjective ergo an
equivalence if A has all small coproducts and admits a compact projective generator #. In fact, one can identify

$ ! EndA(#) ∈ Alg(ModZ).

We see that the theory of abelian categories can therefore be subsumed into the theory of module
categories, where the ring that these modules are taken over even admits an explicit description. Recall that
a compact projective object in an (∞-)category is an object * such that the functor map(* ,−) commutes with
sifted colimits.

The result above follows from a certain monadicity result, known as the Barr–Beck theorem, or Barr–
Beck–Lurie in the ∞-categorical case. The goal of this section will be to state a similar result in the theory
of presentable stable (i.e. Sp-linear) ∞-categories, and end with a generalisation to C-linear ∞-categories,
where C is of the form

C = Fun(&op , Sp).

Let us now present the main workhorse of this section, which is the Barr–Beck–Lurie theorem from
[Lur17] Theorem 4.7.3.5.
Theorem 4.3 (Barr–Beck–Lurie). Consider an adjunction of∞-categories

) ∗ : C D : )∗

and its associated monad
7 = )∗ ) ∗ ∈ Alg(End(C)).

There is a natural factorisation

) ∗ : C Mod(C;7) D : )∗
)̃ ∗

)̃∗

through the category of modules over 7 with its associated free/forgetful adjunction. The following are equivalent

• The adjunction )̃ ∗ 2 )̃∗ is an equivalence, i.e. ) ∗ 2 )∗ is a monadic equivalence.

• D admits geometric realisations, and they are preserved by )∗, which is furthermore conservative.

Let us illustrate this with a pair of examples.
Example 4.1. Suppose that C and D are both E%-algebras in PrL

St, i.e. stable presentably E%-monoidal
∞-categories, and that the left adjoint ) ∗ is a strict E%-monoidal functor. Then the right adjoint )∗ admits the
structure of a lax E%-monoidal functor. In particular, it sends the E%-algebra 1D to an E%-algebra )∗1D in C.
The monad 7 can then be identified with the operation )∗1D ⊗ −
Example 4.2. Let C be an element of PrL

St. Then a choice of compact object * : Δ0 → C can be extended to a
left adjoint

*∗ : Sp % Sp(P(Δ0))→ C

by Remark 4.4. This has a right adjoint given by

*∗ = Map(* ,−) : C→ Sp,

i.e. taking the mapping spectrum out of * in the stable∞-category C. The monad 7 can be identified with

7 = *∗*∗(8) = Map(* , *),

so that the Barr–Beck–Lurie theorem tells us that this adjunction is monadic if and only if Map(* ,−) is
conservative and preserves simplicial colimits, i.e. * is compact, and is a generator of C.

This last remark is precisely our Sp-linear analogue of the Freyd-Mitchell embedding theorem, namely
the Schwede–Shipley recoginition theorem, cf. [Lur17] Theorem 7.1.2.1.
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Theorem 4.4 (Schwede–Shipley). Let C be an element of PrL
St which is generated under colimits by a compact

projective object *. We will refer to this type of stable homotopy theory as monogenic in reference to [HPS97]. Then
the adjunction

*∗ : Sp C : *∗

is monadic, and one can identify the monad *∗*∗ with the E1-ring MapC(* , *) in Sp, whence one obtains an equivalence

C %Mod(Sp; EndC(*)).

Remark 4.6. We remark that if C is symmetric monoidal and such that * is the unit 1C, then this equivalence
can be extended to a symmetric monoidal equivalence.

This result is extremely useful in homotopy theory, since it precisely tells us that sufficiently nice
homotopy theories (i.e. those generated by a singe compact projective object) can be ensconced within
the homotopy theory of spectra, but with a module structure over some rather complicated algebra object
encapsulating the structure of the original stable homotopy theory. This program can be extended to more
general cases where we replace Δ0 with an arbitrary grouplike monoidal∞-category &, hence relaxing the
monogenic condition. This process is described in [Heg18], and it is our main reference for this section.
Definition 4.11. A grouplike symmetric monoidal∞-category & is a monoidal∞-category such that every
element is invertible for the monoidal structure. Our primary examples are the discrete∞-category Z* and
the poset Z (these will be discussed in more detail in Section 5) with monoidal structure given by addition.

Given such a &, we consider the∞-category

Sp&op
= Fun(&op , Sp) % Sp(P(&)),

viewed as an element of CAlg(PrL
St) using the Day convolution monoidal structure. In particular, one can

consider the∞-category
Mod(PrL

St; Sp&op)
of Fun(&op , Sp)-linear∞-categories. These are enriched in Sp&op by a direct application of [Lur17] Proposi-
tion 4.2.1.33. One can think of these enriched mapping objects as arising from the usual left adjoint

*∗ : Sp→ C

induced by the functor Δ0 → C picking out an object *. The right adjoint of this functor is precisely the
mapping spectrum functor Map(* ,−). We can then use the fact that the target is an Sp&op -module to tensor
this up to a left adjoint

*&∗ : Sp ⊗ Sp&op % Sp&op → C,

whose right adjoint is precisely Map&(* ,−).
We now proceed to give an Sp&op -linear analogue of the Schwede–Shipley theorem.

Theorem 4.5. Let C be an element of Mod(PrL
St; Sp&op) which contains some compact object * such that

Map&(* ,−) : C→ Sp&op

is a conservative. We will refer to this type of stable homotopy theory as &-plurigenic. Then the adjunction

Sp&op
C

is monadic, and one can identify the monad with the E1-ring Map&(* , *) in Sp&op , whence one obtains an equivalence

C %Mod(Sp&op ; End&C(*)).
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This theorem is stated here as in Theorem 2.15 of [Heg18]. For completeness, we will reproduce the
proof in op. cit. Note that it is a straightforward generalisation of the proof of the Schwede–Shipley theorem
in [Lur17] Theorem 7.1.2.1

Proof. This proof essentially follows from a reduction to Proposition 4.5.8.5. in op. cit, using the observation
that C is an Sp&op -module in PrL

St, hence left tensored over the latter. It suffices to show the following
statements:

1. C admits geometric realisations,

2. and these are preserved by the right adjoint 9 : C→ Sp&op to left tensoring map at *

+ : Sp&op × C→ C : : ↦→ : ⊗ *.

3. The left tensoring map
Sp&op × C→ C

should preserve geometric realisations.
4. 9 should be conservative.
5. 9 and + should satisfy a sort of projection formula, stating that the natural map

+(: ⊗ 9(8)) = (: ⊗ 9(8)) ⊗ * % : ⊗ (9(8) ⊗ *) = : ⊗ +(9(8))→ : ⊗ 8
ought to be adjoint along + 2 9 to an equivalence

: ⊗ 9(8) ∼−→ 9(: ⊗ 8).

Now the presentability assumption already buys us a lot. Indeed, since Sp&op and C are presentable and C

is an Sp&op -module in PrL
St, i.e. such that all structure maps are left adjoints, we immediately see that point

1 holds. Further, C is assumed to be presentably symmetric monoidal, so that one can apply the adjoint
functor theorem to + to obtain the existence of 9, as well as note that 3 holds. To prove point 2, we note that
+ is left adjoint to the enriched mapping functor Map&(* ,−) per construction. In particular, this means that
9 admits an explicit description as such. Since * was assumed to be compact, we see that 9 then commutes
with filtered colimits. By the stability assumption, we see that it also commutes with cofibre sequences sine
these are fibre sequences. We conclude that 9 is cocontinuous, hence preserves geometric realisations. The
fact that 9 is conservative is then precisely the condition we required * to satisfy. Finally, let us show that
the map : ⊗ 9(8)→ 9(: ⊗ 8) is an equivalence for all : ∈ Sp&op . Since this∞-category is (the stabilisation
of) a presheaf category on &, it suffices to check this for all generators : = Σ∞+%よ('), ' ∈ &. Indeed, 9 is
cocontinuous and both Sp&op

, C are presentably symmetric monoidal, so that expressing : as a colimit of
these representables the result would follow. Once again using cocontinuity we can assume % = 0. But now
this becomes tautological. Indeed, 9 is Sp&op -linear in the sense that the left tensoring of C over Sp&op is
defined such that

Σ∞よ(') ⊗Map&(* , 8) % Σ∞よ(') ⊗ ('′ ↦→Map(* ,Σ∞よ('′) ⊗ 8)),
% ('′ ↦→Map(* ,Σ∞よ(') ⊗ Σ∞よ('′) ⊗ 8),
%Map&(* ,Σ∞よ(') ⊗ 8).

!

Remark 4.7. By a similar observation as before, we see that this equivalence is symmetric monoidal if * is
the unit, by applying the universal property of Day convolution.
Remark 4.8. This result is clearly a generalisation of the classical result of Schwede–Shipley when & = Δ0,
and a &-plurigenic homotopy theory is easily seen to be a monogenic homotopy theory. The difference then
lies in the &op-indexed mapping spectra, that keep track not only of the compact object in C but also all of
its shifts along morphisms in &. This admits a particularly simple description when & = Z* or Z, and the
latter will be discussed extensively in the description of deformations of stable homotopy theories.
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4.5 Dwyer–Greenlees theory in PrL
St

To describe recollements of stable presentably symmetric monoidal ∞-categories, especially in the case
where this recollement arises from a deformation, it will be useful to develop the arithmetic of stable
presentably symmetric monoidal ∞-categories. In this section, we will describe how to decompose these
into complete or torsion and invertible objects with respect to certain elements. The classical analogy for
this is the decompostion of abelian groups into Z["−1]-modules and "-complete abelian groups; leading to
the usual fracture square. As we will see later on, this is a special case of a recollement, and this section
aims to introduce some of the most salient examples of these.

The primary results of this section reflect those of [DG02], in which they define trivial, torsion, and
complete objects in certain enriched categories of cochain complexes, defined in terms of the contractibility
of certain mapping complexes. As claimed in op. cit. this theory extends to stable presentably symmetric
monoidal∞-categories, as expounded in detail in our primary reference for this section, [MNN17].

The ingredients are the following:
• A stable and presentably symmetric monoidal∞-category C, such as the∞-category of spectra, filtered

spectra, or synthetic spectra (to be discussed below).
• A homotopy associative algebra object ;, such as an Adams type homology theory in spectra, or #!

in filtered/synthetic spectra (see below).
We impose the following conditions, which are all met by our primary examples of interest.

• We assume that C is generated by dualisable objects, and that the monoidal unit 1C is compact (whence
all dualisables are compact as well).

• We assume that the underlying object of ; is dualisable.
Definition 4.12. Given such an ;, we can form a family of full subcategories of C.

• First, define the ;-trivial objects to be the 7 ∈ C such that

7 ⊗ ; % 0.

• Their right orthogonal complement, i.e. the 3 ∈ C such that for all ;-trivial 7 we have

map(7 ,3) % 0

are called ;-complete. They form a full subcategory C∧; . Note from this definition that one can
identify C∧; with the Bousfield localisation of C at the − ⊗ ;-equivalences.

• The smallest localising subcategory of C containing the objects

; ⊗ -
for - ∈ C dualisable is the subcategory of ;-torsion objects ;C.

• Their right orthogonal complement, i.e. the 0 ∈ C such that for all ;-torsion , we have

map(,,0) % 0

are called ;-invertible. They form a full subcategory C[;−1]
These definitions admit some immediate observations about reflectivity properties of these subcategories.
Remark 4.9. The subcategories C∧; and C[;−1] are defined in terms of mapping spaces into them, which
clearly commutes with limits. Therefore, these subcategories are closed under limits, whence they form
reflective subcategories of C. Indeed, using presentability, this guarantees the existence of;-completion and
;-inversion functors, which are the reflections back into these subcategories. On the other hand, colimits in
the first two subcategories are computed by taking colimits in the ambient∞-category C, and then applying
the;-completion and;-inversion functors respectively. Dually, the inclusion of the;-torsion objects ;C ⊂ C
admits a right adjoint.
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We now come to the main result of this section, which is an identification between the ;-torsion and
;-complete objects of C.
Lemma 4.1 ([MNN17] Theorem 3.9). The functor (−)∧; : C→ C∧; restricts to an equivalence

;C % C∧; .

Proof. This follows from the definitions above, making crucial use of the assumption that ; is dualisable,
and is discussed in detail in op. cit. !

A particularly interesting feature of this is that the ;-complete objects–forming a reflective subcategory–
are identified with the ;-torsion objects, which form a coreflective subcategory. In particular, this carries
over dually to the right orthogonal complement of the latter–namely the full subcategory of ;-invertible
objects. We conclude that the inclusions and adjoints to them lie in a commutative diagram

;C

C[;−1] C

C∧;

∼

;−1

(−)∧;

;(−)

where all horizontal or diagonal arrows are left adjoint to the one lying below them. The two inclusions on
the right hand side are the inclusions of ;-complete and ;-torsion objects, respectively right and left adjoint
to the ;-completion functor. By commutativity, it is often easier to leave the identification ;C % C∧; implicit,
and write this diagram in the form

C[;−1] C C∧; .

;−1

(−)∧;

We will see later that this diagram is important as it describes a recollement of C.
Remark 4.10. Now let us provide some characterisations of complete objects. Note that any ;-module is
clearly ;-complete. Indeed for 7 ;-trivial, the universal property of free ;-modules gives

map(7 ,3) % map(7 ⊗ ;,3) % map(0,3) % 0.

Lemma 4.2. The ;-completion of an object of 3 admits an explicit description in terms of the cobar resolution of ;.
Explicitly, the unit map 3 → 3∧; can be identified with the augmentation map

3 → lim
Δ
3 ⊗ ;⊗•.

Proof. This builds on the previous remark, by nothing that the cobar resolution of 3 is akin to a resolution
of 3 by ;-modules. The latter are all complete, and the subcategory of ;-complete objects is closed under
limits, whence we see that the target of the augmentation map is actually an element of C∧; . Now note that ;
is dualisable, so that ;⊗− preserves limits–being right adjoint to tensoring with the dual of ;. We therefore
see that the augmentation map can be tensored with ; to obtain a map

3 ⊗ ;→ lim
Δ

3 ⊗ ;⊗•+1.

Now the cosimplicial object inside the limit is just a split cosimplicial object and the map is its augmentation,
so that it must be an equivalence. We conclude that the original augmentation map is a − ⊗ ;-equivalence
to an ;-complete object, hence ought to be seen as an ;-completion map. !
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5 Filtered spectra
In this section, we introduce the∞-category of filtered spectra, whose relation with the∞-category of spectra
will play a fundamental rôle in the yoga of deformations of homotopy theories. A related notion is that of
graded spectra, which will be introduced as well.

Consider the poset of integers Z, with the poset structure being given by the usual order relation ≤,
and view this as a (1, 1)-category in the obvious way. This is further equipped with a symmetric monoidal
structure given by addition of integers, so that its nerve is a symmetric monoidal∞-category, also denoted
Z. On the other hand, we can also view the integers Z as a monoid without its order, and view this as
a discrete groupoid in spaces. The resulting symmetric monoidal ∞-category is denoted Z*. These two
∞-categories allow us to define filtered and graded objects respectively.
Definition 5.1. LetCbe some∞-category, which will always be stable and presentably symmetric monoidal
in the future. Then a filtered object of C is a functor Zop → C, while a graded object of C is a functor Z* → C.
These are the objects of the∞-categories of filtered and graded objects in C respectively, which we define as
the functor∞-categories

CFil = Fun(Zop , C), CGr = Fun(Z* , C).

Note that these ∞-categories are once again symmetric monoidal by equipping them with the Day
convolution. Letting & be some indexing∞-category with symmetric monoidal structure denoted ⊗& , and
letting ⊗C denote the symmetric monoidal structure on C, recall that the the Day convolution of two functors
3 ,0 : &op → C is defined by

(3 ⊗ 0)' = colim
'→'′⊗& '′′

3'′ ⊗C 3'′′ .

When & is given by Z or Zop this can be slightly rephrased by noting that the former is a poset while the
latter is discrete hence does not have any nontrivial morphisms.

⊗ : CFil × CFil → CFil , ⊗ : CGr × CGr → CGr ,

3 ,0 ↦→ 3 ⊗ 0 : % ↦→ colim
%≤"+/

3" ⊗C 0/ , 3 ,0 ↦→ 3 ⊗ 0 : % ↦→
⊕
%≤"+/

3" ⊗C 0/ .

In particular, this allows us to describe the unit of CFil as the filtered object given by

1CFil = · · ·→ 0→ 0→ 1C → 1C → · · · ,
which is zero in degrees ≥ 1 and consists of the unit of C and identity maps in all lower degrees. Indeed, it
is easy to verify that for any other filtered object 3 of C we have

(3 ⊗ 1CFil)% = colim
%≤"+/

3" ⊗C 1CFil / ,

% colim
%≤"+/ ,/≤0

3"[/].

The diagram formed by these 3"[/] looks like a slice in the fourth and third quadrants of the (" , /)-plane.
Recall that the arrows between the objects go in the direction of decreasing " , /. Diagramatically,

3% , 3%+1 3%+2 3%+3 · · ·

3%+1 3%+2 3%+3 · · ·

3%+2 3%+3 · · ·

3%+3 · · ·
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it becomes clear that the down-and-left direction of the arrows allows us to distinguish a cofinal subdiagram
consisting of all objects sitting on the outermost diagonal "+ / = % and the spans formed with objects on the
diagonal " + / = % + 1. Now note that all vertical morphisms in consideration were obtained by tensoring
with the identity of 1C, hence are invertible. This allows us to consider an equivalent cofinal subdiagram
where the downward arrows now point up. It is clear that this has a terminal object, namely 3% . We
conclude that the colimit in the expression for (3 ⊗ 1CFil)% is simply 3% itself. Further, the connecting maps
between filtration degrees are clearly equivalent to the original structure maps in 3 itself.

As mentioned above, the base ∞-category C will always be assumed to be stable and presentably
symmetric monoidal, i.e. an element of CAlg(PrL

St). Now the∞-category PrL
St has a tensor unit given by the

∞-category of spectra Sp, so that many results about homotopy theories can be proven in spectra and then
induced up to more general homotopy theories. There is a similar situation for the theories of filtered and
graded objects, where results about filtered and graded spectra can be tensored up to more general settings:
Lemma 5.1. Let & be an ∞-category, and consider the functor ∞-category Fun(&op , C) of &-shaped diagrams in
some stable, presentably symmetric monoidal∞-category C. Then there is an equivalence

Fun(&op , C) % Fun(&op , Sp) ⊗ C.

Proof. This follows from the definitions and the universal property of stabilisation and presheaves. Indeed
the right hand side is defined as

Fun(&op , Sp) ⊗ C := FunR(Fun(&op , Sp)op , C).

We then note that

FunR(Fun(&op , Sp)op , C) % FunL(Fun(&op , Sp), Cop)op ,

% FunL(Sp(P(&)), Cop)op ,
% Fun(&, Cop)op ,
% Fun(&op , C),

where we used the duality of limits and colimits to recover the setting of equivalence 1, further using
the enriched adjunction formula in Remark 4.4. While it is clear that Cop is stable if and only if C is, to
apply the universal property of presheaf categories we used the fact that any presentable ∞-category also
has all small limits, which is a rather immediate result of the presentation of the latter as localisations of
presheaf∞-categories, cf. [Lur09] 5.5.2.4. This guarantees that Cop is cocomplete. Further, we see that this
equivalence is symmetric monoidal by the universal property of the Day convolution as left Kan extending
the monoidal structure on & along the Yoneda embedding and stabilisation. !

Remark 5.1. When & is symmetric monoidal and Fun(&op , Sp) is given the Day convolution structure, we
see that this Lemma is simply telling us that one can go from Sp-linear category theory (i.e. working in
PrL

St) to Sp&op -linear category theory (i.e. working in Mod(PrL
St; Sp&op) by forming free objects obtained by

tensoring with Sp&op , and that the latter admit a simple description as C&op . Further, if C was an Sp-algebra,
then it is clear from the comment above that the equivalence

Sp&op → C&
op

is monoidal for the Day convolution on both sides.
In particular, setting & = Z, resp. & = Z*, we obtain4

CFil % SpFil ⊗ C, CGr % SpGr ⊗ C.

Now that the theory of filtered and graded objects has been set up and we have observed that we can safely
restrict to spectra, let us describe a few important adjunctions between SpFil, SpGr, and Sp.

4We will always identify Z* with (Z*)op to lighten notation.
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Definition 5.2.

• Since Sp is the unit of PrL
St, there is an essentially unique symmetric monoidal left adjoint Sp→ SpFil.

This functor will be denoted by *. It is easily verified that this is given by

*3★ =

{
0, ★ ≥ 1,
3 , ★ ≤ 0,

with the connecting morphisms being either zero maps or identities.

• There is another functor from Sp to SpFil which can be viewed as some sort of trivial filtration. It is
denoted5

Cs : Sp→ SpFil

and defined by sending some spectrum 3 to the filtered spectrum consisting of 3 in every degree and
identity maps between them. In fact, this is just the constant diagram functor from Sp to the diagram
category Fun(Zop , Sp). Therefore, we immediately note that Cs has left resp. right adjoints given by
the colimit resp. limit of a filtered spectrum along the indexing category Zop. The former of these will
be referred to as the realisation functor Re, while the latter is called the intersection In. We therefore
obtain an adjunction

Sp SpFilCs⊥
⊥

Re

In

Re(3★) = colim
%∈Zop

3% , Cs(3) = · · ·→ 3
id−→ 3 → · · · , In(3★) = lim

%∈Zop
3% .

• Note that there is an obvious inclusion Z* → Zop of symmetric monoidal categories. Precomposition
with this inclusion then gives us a functor

< : SpFil → SpGr

that sends a filtered spectrum 3★ simply to its collection of objects {3%}%∈Z without the connecting
homomorphisms. Since the categories SpFil and SpGr are presentable, we can find a left adjoint to
this precomposition by left Kan extension. It is easily verified that the the left Kan extension functor
4 : SpGr → SpFil is defined by

4(3∗)% =
⊕
!≤%

3! →
⊕
!≤%−1

3! = 4(3∗)%−1 ,

i.e. by progressively smaller direct sums and projections between them.
• Finally, we come to a functor which is important in the description of filtered spectra as filtrations,

namely the associated graded functor. This is defined by

gr : SpFil → SpGr : gr(3★)% = 3%/3%+1 ,

where the notation 3%/3! for ! ≥ % refers to the cofibre of the essentially uniquely prescribed map
3! → 3% . Note that colimits in diagram categories are computed levelwise, so that the levelwise
cofibre expression of gr tells us that it preserves colimits. We conclude that it is a left adjoint by
presentability of Sp. It is also straightforward to check that it is strict symmetric monoidal with
respect to the Day convolution on both sides. Indeed, it is immediate to verify this on objects of the
form 1Fil(%), and since these generate SpFil under colimits and gr is a left adjoint, the result follows.
This is worked out in [Hed20] Proposition II.1.13.

5If we were to follow an analogy with the theory of synthetic spectra of [Pst18] in naming this, it would be called 0 like the spectral
Yoneda embedding. However, this notation might cause confusion.
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As the name implies, a filtered spectrum 3★ : Zop → Sp ought to be interpreted as a descending
filtration of its realisation Re(3★). This is why filtered spectra are relevant objects, since they allow us to
resolve spectra by more familiar of computationally tractable objects. In particular, we single out a few
examples of filtrations that arise naturally.
Example 5.1.

1. Consider the usual t-structure on Sp with truncation functors
!≥% : Sp→ Sp≥% ⊂ Sp.

Using the canonical natural transformations
!≥% → !≥%−1 ,

these assemble to a functor
!≥★ : Sp→ SpFil

in the obvious way. In fact, this construction is lax symmetric monoidal as mentioned in [BHS20]
Example C.5. It is also clear that this construction extends to arbitrary stably symmetric monoidal
∞-categories with a t-structure that is compatible with the symmetric monoidal structure. In fact, left
and right completeness of the Postnikov t-structure on Sp guarantee that this filtered spectrum has is
complete and realises to the original underlying spectrum.

2. Given a lax symmetric monoidal functor 7 : Sp→ SpFil, and an E%-algebra = in Sp, we obtain a functor
called the décalage of 7 along = from spectra to filtered spectra. It is defined by sending some 3 to
the cosimplicial spectrum obtained by tensoring with the cobar resolution =∧• of =, then applying 7
to obtain a filtered cosimplicial spectrum (it is clear that this is equivalent to a cosimplicial filtered
spectrum). Finally, applying the totalisation (i.e. limit over Δ) to this cosimplicial object, we obtain a
filtered spectrum denoted Déc(7;=)(3). In terms of formulas:

Déc(7;=) : Sp ∧=∧•−−−→ SpΔ 7−→ (SpFil)Δ Tot−−→ SpFil.

Now smashing with the cobar contruction is lax symmetric monoidal by virtue of the the multiplication
maps of = giving rise to a map

3 ∧ =∧% ∧ 0 ∧ =∧% % 3 ∧ 0 ∧ =∧2% → 3 ∧ 0 ∧ =∧%

for any spectra 3 ,0 and % ≥ 0. Since the multiplication maps are precisely the coface maps of =∧•,
these assemble to a map of cosimplicial objects making − ∧ =∧• lax monoidal as required.
Since 7 was assumed to be lax monoidal, we see that the composite functor Déc(7;=) is lax monoidal.
This means that it sends E%-algebras in spectra to E%-algebras in filtered spectra. In fact, this construc-
tion is essential for constructing examples of the latter.6

5.1 The thread operator
In this section, we show that SpFil has a certain endofunctor which plays a very important rôle in the
deformation picture. First, note that any filtered spectrum 3★ can be shifted, i.e. we can define a new
filtered spectrum 3(!)★ by 3(!)★ = 3★−! with the obvious morphisms. In fact, one can easily verify the
formula 3(%) % 3 ⊗ 1Fil(%), so that we can restrict our attention to the shifts of the symmetric monoidal unit
1Fil. Now note that the morphisms of spectra 3% → 3%−1 induce a map of filtered spectra

3★ · · · 3%+1 3% · · ·

3(1)★ · · · 3% 3%−1 · · · ,
6The notation Déc refers to the décalage of a filtered object. A similar construction has been studied starting with filtered spectra and

taking Whitehead covers for a t-structure on filtered spectra called the Beilinson t-structure in [Hed20], where its relation to the induced
spectral sequences is studied in depth. However, there is no known connection between the décalage presented there (constructed in
such a way to recover Deligne’s décalage of chain complexes) and the décalage of a cosimplicial object used in this work.
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where the vertical morphisms are the same as the horizontal ones. We denote this morphism3★→ 3(1)★ by
!. By abuse of notation, ! will usually refer to this morphism on the unit S, but by our previous observation
it can be tensored up to any other filtered spectrum.
Example 5.2. Given such an endomorphism on every object, we can single out several classes of filtered
spectra.

1. Consider the full subcategory of SpFil of filtered spectra on which ! acts invertibly. This means that
! : 3★→ 3(1)★ must be an equivalence. Using our diagram above, this means that the structure maps
3%+1 → 3% must be equivalences for every % ∈ Z, so that 3★ is essentially a constant filtration. In fact,
this means that every !-invertible filtered spectrum is equivalent to a filtered spectrum of the form
Cs(3)★. If SpFil[!−1] denotes the full subcategory in question, we conclude that the restriction

Cs : Sp→ SpFil[!−1]

is an equivalence of categories. The inclusion ( : SpFil[!−1] ⊂ SpFil has an obvious left adjoint given by
!-inversion, i.e. by sending a filtered spectrum 3★ to the colimit

!−13★ = colim (3★
!−→ 3(1)★

!−→ 3(2)★→ · · · ).

If we now fix some level % ∈ Zop, it is clear that

!−13% = colim (3% → 3%−1 → 3%−2 → · · · ) % Re(3).

Since colimits are computed levelwise, we conclude that !−13 is the constant filtered spectrum on
Re(3). If we then recall that Cs induced an equivalence between spectra and constant filtered spectra,
we see that the adjunction Re 2 Cs is none other than the adjunction !−1 2 ( after identifying SpFil[!−1]
with Sp using Cs.

2. Next, one could consider the objects of SpFil that are !-complete. To simplify notation in the consider-
ation of !-completions, we will adopt the notation (for any ' ≥ 0)

0/!'★ = cofib(0(−')★
!'−→ 0★).

In fact, since the Day convolution on SpFil preserves colimits in each variable, we can exchange the
cofibre with the degree shift (the latter being given by tensoring with some shift of 1Fil), and see that
0/!'★ % 0★ ⊗ 1Fil/!'★. The second factor in this tensor product is usually denoted #!' . If we let SpFil∧

!

denote the full subcategory on !-complete filtered spectra, we note that the inclusion SpFil∧
! ⊂ SpFil

admits a left adjoint. This left adjoint is given by !-completion7

SpFil → SpFil∧
! : 0 ↦→ 0∧! = lim(· · ·→ 0/!2 → 0/!→ 0).

Note that this expression is the general expression for completion along an endomorphism in any
presentable stable ∞-category, and is not unique to filtered spectra. However, we do make use of
this explicit expression for !-completion to make the following observation. Suppose we are given a

7For simplicity in notation, we will sometimes omit the subscript★ that denoted a filtered object. By convention,★ is always indexed
on Zop, while subscripts ∗ and • are indexed on Z* and Δop respectively.
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!-complete filtered spectrum, w.l.o.g. of the form 0∧! , then one can consider its intersection

In(0∧! ) = lim
%∈Zop

(0∧! )% ,

% lim
%∈Zop

lim(· · ·→ (0/!3)% → (0/!2)% → (0/!)%),

% lim
%∈Zop

lim
'≥1

(0/!')% ,

% lim
%∈Zop

lim
'≥1

0%/0%+' ,

% lim
%∈Zop

0%/In(0),

% In(0)/In(0),
% 0.

In this argument, we used that cofibre sequences in the stable ∞-category Sp are equivalent to fibre
sequences hence commute with limits. The identification of the %-th part of 0/!' comes from the
definition of !' as the canonical map 0(−') → 0, so that the cofibres take the form 0%/0%+' . We
conclude that all !-complete filtered spectra are such that their intersection vanishes, i.e. what are
usually called complete filtrations.
In fact, one can use the formulae above to give a more simple description of !-completion for a filtered
spectrum 0: it is simply given by

(0∧! )% % 0%/In(0).
We conclude that the full subcategories of !-complete filtered spectra and filtered spectra with van-
ishing intersection are equivalent.
Further, let us note that !-complete filtered spectra also admit a description as a right orthogonal
complement in the sense of Dwyer–Greenless. Indeed, since there was a tautological adjunction
Cs 2 In, we see that if 0 is a !-complete filtered spectrum, i.e. such that the spectrum In(0) is trivial,
then by the Yoneda lemma this is equivalent to

mapSp(3 , In(0)).

vanishing for all choices of 3. Applying the adjunction Cs 2 In, we see that this is equivalent to

0 % mapSp(3 , In(0)),
% mapSpFil(Cs(3),0).

Now Cs(3) ranges over all constant filtrations, i.e. all objects of SpFil[!−1], so we see that 0 lies in the
right orthogonal complement of this subcategory. In the remainder of this text, we will therefore not
distinguish between the full subcategories on !-complete filtered spectra, complete filtrations, and the
right orthogonal complement of SpFil[!−1]; in fact all three will be denoted SpFil∧

! .
In fact, having constructed !, we see that it controls many of the interesting functors in and out of filtered

spectra. In particular, let us consider its cofibre when viewed as a map 1Fil(−1)→ 1Fil. In that case, we have

#! = · · ·→ 0→ 0→ S→ 0→ 0→ · · · ,
with the sphere spectrum sitting in filtration degree zero. If we let 3 be any other filtered spectrum, we see
that

#! ⊗ 3 % cof(3(−1) !−→ 3),
% gr★3 .

Indeed, in every degree %, this cofibre looks like the cofibre of the structure map 3%+1 → 3% , which is
precisely gr%3. Now the connecting maps in this filtered spectrum are induced by

gr%3 = 3%/3%+1 → 3%−1/3%+1 → 3%−1/3% = gr%−13 .



5 FILTERED SPECTRA 28

It is clear that this composite is trivial, i.e. the maps between graded pieces are induced precisely by the
maps that are coned out in their construction. We conclude that gr★3 should rather be viewed as a graded
spectrum, so that

#! ⊗ − : SpFil → SpGr

is none other than the associated graded functor gr.
Remark 5.2. This statement is not entirely precise, since we have made an identification between a graded
spectrum, and a graded spectrum whose structure maps are all zero. We denote the functor adjoining all of
these zero structure maps to obtain a filtered spectrum by

> : SpGr → SpFil.

We claim that this is actually the right adjoint of the associated graded functor

gr : SpFil → SpGr.

Indeed, we saw that this preserved colimits since it is expressed in terms of a collection of cofibres. To prove
this, let 3★ be an arbitrary filtered spectrum, and >(0)★ the image under > of some graded spectrum 0∗, i.e.
such that all of its structure maps are zero. We then simply compute that the mapping space

mapSpFil(3★, >(0)★) ⊂
∏
%∈Z

mapSp(3% , >(0)%)

in filtered spectra consists of a collection of maps 3% → >(0)% = 0% such that the obvious squares commute.
For every %, this square is of the form

3%+1 3%

0%+1 0% .

(%

)%+1 )%

0

In particular, this forces the composite )% (% to be zero, so that the map )% factors though the cofibre

8% → cof((%) =: gr%3 → 0%

by the universal property of the latter. We iterate this for every % and come to the conclusion that

mapSpFil(3★, >(0)★) %
∏
%∈Z

mapSp(gr%3 ,0%) % mapSpGr(gr∗3 ,0∗)

exhibiting the adjunction gr 2 > as required.
In fact, the point of this discussion is primarily to show that > is the right adjoint of a strict symmetric

monoidal functor, hence is lax monoidal itself. This means that the object #! in filtered spectra, since it can
be written as

#! = >gr∗1Fil

admits the structure of an E∞-algebra in SpFil, as the image under (lax) monoidal functors of the unit, which
is naturally an E∞-algebra. Although this observation seems rather innocuous in the context of filtered
spectra, equipping #! with the structure of an E∞-algebra in more general deformed homotopy theories
is usually highly nontrivial. The upshot of a theory of deformations of homotopy theories in terms of
symmetric monoidal left adjoints from SpFil, as will be extensively discussed below, is then that one can
obtain this E∞-algebra object formally in any deformation. In fact, once we discuss synthetic spectra, it will
become clear that proving that the synthetic version of #! is an E∞-algebra is highly nontrivial.
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5.2 Complete filtrations as cochain complexes
In fact, this last subcategory of !-complete filtered spectra also admits a different description as an ∞-
category of cochain complexes in spectra. The latter picture can be useful for several reasons. In particular,
it allows us to consider a new t-structure on !-complete filtered spectra which arises from the levelwise t-
structure on cochain complexes (for brevity, this will not be discussed in this work). Further, this equivalence
is symmetric monoidal, where the symmetric monoidal structure on the ∞-category of cochain complexes
is given by the more intuitive and familiar notion of the tensor product of cochain complexes.
Definition 5.3 ([Ari21]). Let C be a stable presentably symmetric monoidal∞-category, and consider the
following indexing category

Ch0 = Z ∪ {∗}
whose set of objects consists of the integers with a freely adjoined zero object. We then adjoin all morphisms

id% : % → % , ,% : % − 1→ %

in the poset of integers, as well as making ∗ into the zero object by adding unique maps in and out of it.
These are subject to the relation

,% ◦ ,%−1 = 0

as well as the obvious relations concerning the identities. The ∞-category freely generated by these
morphisms modulo the relation above is the indexing category Ch of cochain complexes.
Definition 5.4 ([Ari21]). Given a stable presentably symmetric monoidal ∞-category C, we define the
∞-category of cochain complexes in Sp to be the full subcategory

K(C) = Fun∗(Ch, C) ⊂ Fun(Ch, C)

of reduced functors from Ch to C.
It is clear that an object ofK(C) can be interpreted as a cochain complex, since it consists of an increasingly

filtered object such that the composite of any structure maps factors through a zero object of C. Given an
object 3 of K(C), we denote 3(,%) by ,% . Now using the theory of deformations, in 7.1, we have given an
adjunction

- : SpFil K(Sp) : ".

Such that

-(3) % Σ∗gr∗3 , "(#) = Map(1K(★op), #),

where 1K(%) is the cochain complex with the spectrum S% sitting in degree % and zeroes elsewhere. In this
section, we want to show that this restricts to an equivalence

SpFil∧
! % K(Sp).

First, let us show that it restricts, i.e. that there is a factorisation

- : SpFil (−)∧!−−−→ SpFil∧
! → K(Sp).

In fact, this is obvious. Indeed, by our discussion of Dwyer–Greenlees theory, it is clear that the !-complete
filtrations were precisely the #!-local objects. By this reasoning, it suffices to show that - carries #!-
equivalences to equivalences in K(Sp). However, since tensoring with #! simply recovers the associated
graded of a filtration, we see that #!-equivalences are none other than graded equivalences. Now using the
explicit formula - % Σ∗gr∗, it is clear that this is true. On the other hand, if we want to show that " factors
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through the inclusion of complete filtrations, it suffices to compute the limit of the filtered spectra arising in
the image of ". Letting # be a cochain complex of spectra, we obtain

lim
%∈Zop

Map(1K(%), #) %Map(colim
%∈Zop

1K(%), #),

%Map(0, #),
% 0

The central observation to make is that this mapping space would encode (along with infinitely many zero
maps) a map out of the spectrum obtained as the transfinite iterated pushout of S along zero objects, and it
is clear that the latter is equivalent to

S∞ % Σ∞,∞ % 0,
whence the vanishing above follows. We conclude that the adjunction - 2 " restricts as

- : SpFil∧
! K(Sp) : ",

and use the same notation. Now we want to show that this adjunction is part of an equivalence of ∞-
categories. We will roughly follow the argument that is worked out in detail in Section 3 of [Ari21]. For
this, let us first note that - is conservative. Indeed, since all Σ% are conservative functors, we see that - is
conservative if and only if the family {gr∗} is conservative. This is none other than a restatement of the fact
that !-complete filtered spectra are obtained from filtered spectra by localisation at the #!-equivalences,
the latter being precisely the graded equivalences. This has the upshot that one can utilise the commutative
triangles associated to any adjunction to simplify analysis of the unit and co-unit transformations. Indeed,
part of the datum of an adjunction is a triangle

- -"- -,

id-

-. /

where ., / denote the unit and counit of - 2 " respectively. In particular, we can use the two-out-of-three
rule for equivalences to see that -. is an equivalence if / is, and conservativity of - guarantees that this is
equivalent to . being an equivalence. In conclusion, it suffices to show that the counit of the adjunction is a
natural equivalence. Given some cochain complex 3, we describe -"# as

-"# % -Map(1K(★op), #),
% Σ∗gr∗Map(1K(★op), #),
% Σ∗cof(Map(1K(∗ + 1), #)→Map(1K(∗), #)),
% Σ∗fib(ΣMap(1K(∗ + 1), #))→ ΣMap(1K(∗), #)),
% Σ∗+1Map(cof(1K(∗)→ 1K(∗ + 1)), #),
% Σ∗+1Map(S∗+1 , #∗),
% Σ∗+1Σ−∗−1Map(S, #∗),
% #.

The final step requires an explicit description of the cofibre appearing in the mapping spectrum. This can
be observed rather easily by writing out the terms in the cofibre sequence, i.e. (fixing ∗ = %):

· · · 0 S% 0 0 · · ·

· · · 0 0 S%+1 0 · · ·

· · · 0 S%+1 S%+1 0 · · · .
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Indeed, one can compute these cofibres levelwise. Further, it is clear that

cof(S% → 0) % Σfib(S% → 0) % ΣS% % S%+1 , cof(0→ S%+1) % S%+1.

In fact, the connecting map between the two copies of S%+1 appearing in the cofibre is the identity, since
the map between the original cochain complexes was precisely the one induced by the identity from the
pushout of S% along two zero objects. The fact that this connecting map is the identity is salient. Indeed,
it means that a map of cochain complexes out of the quotient above amounts to the datum of countably
many trivial maps, and two maps from S%+1 to the %-th and (% + 1)st spectra of the target, but subject to the
relation that they are essentially the same map so that all necessary diagrams may commute. We conclude
that such a map is equivalent to a single map out of S%+1 to #% , and the result follows. We conclude that
the counit / is an equivalence, whence we have proved that there is an equivalence

SpFil∧
! % K(Sp).
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6 Recollements
In this section, we introduce the notion of recollements of∞-categories, as adapted for stable and symmetric
monoidal∞-categories in work of Shah [Sha21] and Barwick–Glasman [BG16]. The notion of a recollement
arises naturally in algebraic geometry, and was first formalised in its modern form in work of Beĭlinson–
Bernstein–Deligne [DBB83]. Geometrically, recollements arise when some base space–be it a scheme,
topological space, or stack–is decomposed into an open and closed part, so that inclusions of these two parts
induce a variety of morphisms between information on the total space, the closed part, and the open part.
This information could be encoded in categories of sheaves, quasicoherent sheaves, perverse sheaves, etc.
The abstract deformations we consider in this work, will arise as recollements of quasicoherent sheaves on
a certain geometric spectral stack.

We begin with a general description of symmetric monoidal recollements due to Shah in [Sha21], building
on a definition by Lurie in [Lur17]. Note that recollements can be defined for any ∞-category with finite
limits, but we are primarily interested in the case of stable∞-categories.
Definition 6.1. The datum of a recollement is a diagram of stable∞-categories

X0 X X1
(

(4
/

/$

and adjoint functors (4 2 (, / 2 /$. These are required to satisfy certain conditions
• The functors ( and /$ are fully faithful
• The composite /( is trivial, i.e. constant at the zero object of Z.
• The pair (/ , (4) is jointly conservative, i.e. an arrow ) in X is an equivalence if and only if /( ) ) and
(4( ) ) are equivalences.

We call (4/$ the gluing functor, X0 the open part and X1 the closed part of the recollement.
In fact, since these conditions are rather strict, we will see that a recollement can be recovered entirely

from its gluing functor. Alternatively, one could think of a recollement as a generalised fracture square, and
it turns out that the structure of a recollement can be recovered entirely from its closed part. Both of these
perspectives will be quantified later on.
Remark 6.1. There are two opposite conventions for what the open and closed part of a recollement should
be, and the literature is divided between the two. The convention used here is consistent with an open-
closed decomposition in algebraic geometry, and the ensuing recollement on quasicoherent sheaves. It is
the one adopted in [AMR19]. Most other sources such as [Lur17] and [Sha21] use the opposite convention,
which arises from an open-closed decomposition of a topological space and the corresponding recollement
on constructible sheaves. To facilitate translation between these two pictures, we adopt the notation X0,
X1 as opposed to the more common U,Z. The subcategory X0 plays the role of the open subcategory
corresponding to the open subscheme in this work as well as [AMR19], while it is referred to as the closed
subcategory in other sources.
Remark 6.2. First, let us note that the diagram in the definition of a recollement can be completed further.
In particular, according to Remark A.8.5 in [Lur17], the inclusion functor ( admits a right adjoint ($ given by

($(3) = fib(3 → /(3)).

This relies on the fact that one can recover (the essential image under ( of) X0 as the full subcategory of X
on objects whose image under / is zero. Indeed, one inclusion is trivial by the condition that /( be trivial.
Conversely, if /(3) % 0 then one can consider the unit map

.3 : 3 ↦→ ((4(3).
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Obviously (4(.3) is an equivalence, while /(.3) is the map between /(3) % 0 and (/()((4(3)) % 0 hence is
also an equivalence. We conclude by joint conservativity that .3 is an equivalence, and 3 lies in the (4-local
subcategory X0.

It is also shown later on in Proposition A.8.13 of op. cit. that / admits a left adjoint /4, but we omit the
proof since it is not enlightening at the moment.

We conclude that the diagram in Definition 6.1 can be upgraded to a diagram of adjunctions

X0 X X1
(

(4

($

/

/$

/4

This setup is useful, since it allows us to quantify the second statement we made about recollements,
namely that they encode fracture squares and are equivalent to the datum of a reflective and coreflective
subcategory, with the other part being recovered as its orthogonal complement.
Proposition 6.1. Given a recollement, the unit transformations associated to the adjunctions (4 2 ( and / 2 /$
induce a commutative diagram of endofunctors

idX ((4

/$/ ((4/$/

which is actually Cartesian.

Proof. This is rather immediate to verify, since it suffices to check this after applying the conservative pair
((4 , /). After applying (4 we find

(4 (4((4

(4/$/ (4((4/$/.

By fully faithfulness of (, the composite (4( is naturally equivalent (precisely by the counit transformation)
to the identity so that this diagram is equivalent to

(4 (4

(4/$/ (4/$/ ,

which is obviously Cartesian, since the top and bottom horizontal arrows are equivalences. If we instead
apply /, we obtain the diagram

/ /((4

//$/ /((4/$/.

However, we imposed the axiom that the composite /( be trivial, and that /$ is fully faithful (i.e. //$ is
equivalent to the identity by the counit), so that this diagram is equivalent to

/ 0

/ 0,

which is once again obviously Cartesian. !
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Remark 6.3. In particular, this Cartesian square of enfodunctors induces for ever 8 ∈ 3 a Cartesian square

3 ((43

/$/3 ((4/$/3 .

!

This gives us some sort of reconstruction result in which 3 can be recovered precisely from the cospan
it is the limit of. However, this cospan contains some redundant information, and we would prefer to
reconstruction some 3 ∈ X from just a pair of objects in X0 ,X1 and some gluing information between them.
These objects are provided by (43, /3 respectively, and the gluing information is the map

(43 → (4/$/3 .

Of course, if one begins with a recollement this morphism simply arises as the counit of the adjunction
/ 2 /$, but when one tries to reconstruct a recollement from its open and closed parts, this is in fact the
only information needed. One sees that the data above recovers 3 by applying the fully faithful functor ( to
obtain the morphism

((43 → ((4/$/3

in the vertical column of the cospan one one hand. On the other hand, one starts with the object /3, applies
the fully faithful functor /$, and then applies the unit transformation of (4 2 ( to obtain the bottom row

/$/8 → ((4/$/3 .

Proposition 6.2. Given a recollement of X into full subcategories X0 and X1 using the same notation as above, one
can reconstruct X as the lax limit

X % X1 ×(4/$ ,X0 ,ev1 X
Δ1

0

in PrL
St. In this equivalence, we identify 3 ∈ X with the object

(/3 , (43 → (4/$/3)

in the limit.

Proof. We refer to the remark above for a sketch of the proof of this equivalence. As for a rigorous proof
within the more general context of stratifications, we refer to [AMR19]. !

The perspective above emphasises the characterisation of recollements as encoding fracture squares,
decomposing objects into their images in the closed and open part of the recollement.
Proposition 6.3 ([Lur17], A.8.20). A stable∞-category X admits a reflective and coreflective full subcategory X1
that is closed under equivalences if and only if it can be written as the recollement of X1 and its orthogonal complement.

We leave the proof to op. cit, but remark that the construction of an orthogonal complement gives an
explicit model of quotients in PrL

St, so that one obtains a cofibre sequence of the form

X⊥1 ← X←↪ X1

that can be completed to a recollement.
Finally, let us introduce a notion of recollement that interacts well with symmetric monoidal structures,

in the sense that the open and closed subcategories both inherit essentially unique symmetric monoidal
structures. In fact, as we will see later, this makes the reconstruction associated to a recollement symmetric
monoidal as well.
Definition 6.2 ([Sha21] 2.20). A symmetric monoidal recollement is a recollement such that the induced
localisations of X are compatible with the symmetric monoidal structure. That is, (4-equivalences and
/-equivalences are closed under tensoring with any object of X.
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In that case, it follows immediately from the theory of symmetric monoidal localisations that the sub-
categories X0 and X1 admit essentially unique symmetric monoidal structures such that the composites ((4
and /$/ are strong symmetric monoidal functors.
Remark 6.4. In fact, if we are given a symmetric monoidal recollement of X, then the reconstruction

X % X1 ×(4/$ ,X0 ,ev1 X
Δ1

0

of Proposition 6.2 is actually an equivalence of symmetric monoidal∞-categories. The symmetric monoidal
structure on the latter is defined as the pullback of the∞-operads X⊗0 , X⊗1 and (X⊗0 )Δ

1 and can be defined on
objects by

(81 , ( : 80 → (4/$81) ⊗ (8′1 , (′ : 80 → (4/$8′1) = (81 ⊗ 8′1 , 80 ⊗ 8′0
(⊗(′−−−→ (4/$80 ⊗ (4/$8′0 → (4/$(80 ⊗ 8′0)),

where the final arrow in the composite uses the assumption that our recollement was symmetric monoidal
to deduce that the gluing functor (4/$ is lax monoidal.
Example 6.1. Let C be an element of CAlg(PrL

St) with a dualisable commutative algebra object ;. Recall
that we could identify full subcategories of C on ;-invertible, ;-complete, and ;-torsion objects, the latter
two being equivalent. These sit inside the diagram

C[;−1] C C∧;

;−1

(−)∧;

of adjoint functors. We claim that this forms a recollement. For this, one would simply have to check that
the ;-completion of an ;-invertible object vanishes, and that the ;-completion with the ;-inversion functor
form a conservative pair.

Proof. The first statement is immediate: given our explicit formula of the ;-completion functor, since we see
that any ;-invertible object vanishes after tensoring with ;. Indeed, this is Proposition 3.11 in [MNN17],
and just follows from dualisability of ;, allowing us to express a mapping space into some 3 ⊗;with 3 ;-
invertible as a mapping space between ;-torsion and ;-invertible objects, which vanishes by the definition
of the latter. The conclusion follows from the Yoneda lemma. In the language of recollements, we have
verified that /( = 0.

For the second statement, suppose that ) : 3 → 0 is a morphism in C such that both of the maps

) [;−1] : 3[;−1]→ 0[;−1], ) ∧; : 3∧; → 0∧;

are equivalences. We want to show that ) is an equivalence. First, recall that the ;-complete and ;-torsion
subcategories were equivalent. This means that we can replace ) ∧; with its (inverse) image under this
equivalence, namely its image under the right adjoint C→ ;C given by ;⊗−. Therefore, we have simplified
to the assumption that ; ⊗ ) and ) [;−1] are equivalences.

Now showing that ) is an equivalence is tautologically equivalent to showing that 1C⊗ ) is an equivalence,
where 1C is the monoidal unit of C. Therefore, if we let E denote the subcategory of C on objects 1 such
that 1 ⊗ ) is an equivalence, we want to show that it contains the unit. It is clear that this subcategory E is
nonempty, as it contains ;, an dis closed under colimits, since the tensor product commutes with these. We
now hand over the proof to [MNN17], where a simple argument is presented as to how the unit sits in the
middle of a fibre sequence between objects that lie in E either assumption, or by a simple argument. The
construction of this fibre sequence would go beyond the scope of this section, as it requires an identification
of the Adams filtration.

We conclude that {/ , (4} form a conservative pair !
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Bringing it all together, we see that any stable presentably symmetric monoidal ∞-category C with a
dualisable homotopy associative algebra object ; gives rise to a recollement of C in terms of C[;−1] and
C∧; , where the latter is equivalent to the full subcategory on ;-torsion objects. In fact, since ;-invertible
objects are those that are killed by tensoring with ; ([MNN17] Proposition 3.11), we see that the family
of (−)[;−1]-equivalences is closed under taking tensor products with any object. The same is true for the
(−)∧; -equivalence, since these are defined to be the maps that become equivalence after tensoring with ;.
We conclude that this recollement is actually a symmetric monoidal recollement.
Remark 6.5. In this example, the gluing functor is given by

3 → 3∧; [;−1],

and it sits in the familiar fracture square

3 3[;−1]

3∧; 3∧; [;−1].
!

6.1 Filtered spectra as a recollement
In this section, we give the main example of a recollement that is of interest to us. It is given by the
structure of a recollement on the∞-category of filtered spectra, where the open and closed parts correspond
to constant and complete filtations respectively. This recollement admits a variety of descriptions: as an
[0 ≤ 1]-stratification of a spectral stack, as a Dwyer–Greenlees type recollement associated to a certain
algebra, or also more ad hoc as a closer analysis of the information contained in a general filtered spectrum.
The geometric picture in terms of stratifications will be discussed in Section 7.4, and tied into the Dwyer–
Greenlees type interpretation to be discussed below. We begin simply with an ad hoc construction of the
fundamental recollement.

Sp SpFil SpFil∧
!

Cs
Re

In

/

/$

/4

In this diagram, Cs and its adjoint are well understood as the functors sending a given spectrum to its
asociated constant filered spectrum, along with its colimit and limit. The functor /$ is the inclusion of
complete filtrations into general filtered spectra, and / is then the previously constructed left adjoint that
completes a filtration, i.e. quotients out by the limit in every degree. This admits a further left adjoint /4. It
is clear from this description that both sides of the diagram can be viewed as full subcategories. We claim
that they actually constitute a recollement.

Proposition 6.4. The diagram above endows SpFil with the structure of a recollement with open part Sp and closed
part SpFil∧

! .

Proof. Clearly, it suffices to show the last two points in the definition of a recollement; i.e. that the composite
/ ◦ Cs is constant, and that {/ ,Re} is a conservative family.

For the first, let us consider an arbitrary spectrum 3, then Cs sends this to the constant filtration

3 ↦→ (· · ·→ 3 → 3 → 3 → · · · )

with identity maps. We have seen that / can be described as quotienting out by the limit, but it is clear that

In(Cs(3)★) % lim
%∈Zop

3 ,

% 3 ,
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so that 3★/In(3) is trivial, consisting of 3/3 % 0 in every filtration degree. Finally, let us prove that {/ ,Re}
is a conservative pair. Let

) : 3★→ 0★

be a morphism of filtered spectra such that

Re( ) ) : 3−∞
∼−→ 0−∞ , /( ) ) : 3★/3+∞

∼−→ 0★/0+∞

are equivalences. Note that equivalences in the functor ∞-category SpFil (hence also its full subcategory
of complete filtrations) are detected levelwise, so that the second statement means that for every % ∈ Z, )
induces an equivalence

3%/3+∞
∼−→ 0%/0+∞.

Further, by functoriality of the colimit, ) also induces an equivalence

3−∞/3+∞
∼−→ 0−∞/0+∞ ,

where the map 3+∞ → 3−∞ whose cofibre we are considering can be viewed as the colimit-to-limit
comparison map. Arranging these equivalences and associated cofibre sequences next to each other, we
obtain a commutative diagram

3+∞ 3−∞ 3−∞/3+∞

0+∞ 0−∞ 0−∞/0+∞.
All horizontal sequences are cofibre sequences, while the two rightmost vertical maps are equivalences
either by assumption on Re( ) ), or by the observation above. Now this means that the final leftmost vertical
map is an equivalence as well. Indeed, it is a standard fact of stable homotopy theory that given a diagram of
cofibre sequences with two out of three vertical maps being equivalences, that the last map is an equivalence
as well. One can observe this by noting that applying homotopy groups to this diagram would result in a
pair of long exact sequences of abelian groups associated to the cofibrations. In this diagram of long exact
sequences, pairs of equivalences alternate with maps that are not necessarily equivalences. However, each of
the latter is surrounded by two equivalences, so that one can apply the five lemma from homological algebra
to see that it must be an equivalence as well. We conclude that the induced map In( ) ) is an equivalence.

Finally, we simply need to recreate the argument above for finite % ∈ Z, considering the diagram of
cofibre sequences of the form

3+∞ 3% 3%/3+∞

0+∞ 0% 0%/0+∞.
We see that the leftmost vertical map is an equivalence by the preceding paragraph, while the rightmost
vertical map is an equivalence by the assumption on /( ) ). We conclude by the same incarnation of the five
lemma that the central map

) : 3% → 0%

is an equivalence. We conclude that ) was an equivalence. !

Remark 6.6. Note that the five lemma for cofibre sequences of spectra is agnostic with regards to which
of the two maps in a diagram of cofibre sequences are equivalences. In fact, one sees that the argument for
why In( ) ) is an equivalence when /( ) ) and Re( ) ) are, equally tells us that Re( ) ) is an equivalence whenever
In( ) ) and /( ) ) are. Therefore, we may equivalently view {/ , In} as a conservative pair, skipping straight to
the final argument of the proof above. This conservative pair may feel more intuitive, since it essentially
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tells us that a filtration decomposes into its limit and the filtration modulo the limit. In fact, using Section
5.2, one can describe this recollement as

Sp SpFil K(Sp).Cs
Re

In

-

"

/4

Under this equivalence, our conservative pairs {/ ,Re} and {/ , In} transform into the conservative pairs
{- = Σ∗gr∗ ,Re}, {Σ∗gr∗ , In}. Now suspensions are conservative, so we can rephrase this as the existence of
a conservative pair

{gr∗ , In}.
The latter conservative pair is common in most literature about filtered spectra, e.g. Proposition II.1.9 in
[Hed20] based on Remark 2.16 in [GP18], and applied in [BMS18], where the existence of this conservative
pair appears in Lemma 5.2.
Example 6.2. Apart from the ad hoc construction of a recollement on filtered spectra given above, we can
also express this in the form of Example 6.1. Indeed, in Section 5.1, we identified the full subcategory of
constant filtrations with the ! -invertible filtered spectra, while the !-complete objects were identified with
complete filtrations. This means that if we set up a recollement based on the dualisable commutative algebra
object #! of the form

SpFil[!−1] SpFil SpFil∧
! ,

then this is none other than the recollement we constructed earlier. In fact, we can give filtered spectra
a third characterisation in terms of spectral algebraic geometry, and the recollement associated to this
characterisation will also be the same as the one constructed above. This appears in Proposition 7.6.
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7 Deformations
We now come to the main theoretical chapter of this work, which is the discussion of deformations of
homotopy theories. This section is divided into describing two models of deformations of homotopy
theories. One is based on spectral algebraic geometry, inspired by [Mou21], while the second model has
appeared in [BHS20]. We show that these two models agree, and interpolate between them to work out
certain examples and describe certain recollements arising canonically on deformations of stable homotopy
theory. Finally, in the next sections on synthetic spectra, we consider the primary example of such a
deformation and see the machinery from this section in action.

7.1 Geometric deformations
In this section, we will introduce the notion of a deformation of homotopy theories from the geometric
standpoint. Indeed, one-parameter deformations can be interpreted geometrically as objects living over A1

such that all fibres over nonzero points of A1 are canonically equivalent to some generic fibre, while the
deformation degenerates into the special fibre over 0. For us, this geometric picture needs to be converted
to a statement about homotopy theories, so that we convert the geometric intuition about deformations into
a statement about presentable stable∞-categories.

In fact, this process is part of the theory of noncommutative geometry, in which geometric objects such
as (spectral) stacks are replaced by their derived (∞-)categories of quasicoherent sheaves. This has been
done in the ∞-categorical setting in e.g. [AMR19], where presentable stable ∞-categories are viewed as
noncommutative stacks. In fact, op. cit. develops a theory of stratifications for these noncommutative
stacks which in particular recovers the theory of recollements. In the latter, the words noncommutative stack
and stable homotopy theory both refer to an object of CAlg(PrL

St).

7.1.1 The geometric stack A1/G!
As described above, a geometric one-parameter deformation with a single special fibre can be described as
a family over A1, with all fibres over A1 \ 0 canonically equivalent. In fact, one can view the equivalences
between all nonzero fibres as being induced by the action of G! on the latter, so that our deformations of
interest could equivalently be described as objects over the quotient stack A1/G! . In this section, we will
review work of [Mou21] on the computation of the noncommutative stack associated to A1/G! . The main
result is the equivalence

QCoh(A1/G!) % SpFil

of presentable stable∞-categories, which is furthermore symmetric monoidal. The proof of this equivalence
requires some work in spectral algebraic geometry, which goes beyond the scope of this paper, hence is
primarily relegated to op. cit. Finally, we note that the computation in op. cit. is of independent interest,
since it gives a geometric way of constructing filtrations on ∞-categories of quasicoherent sheaves over
stacks, and the latter are of particular computational interest for the spectral sequences they provide. In
fact, there is a classical (1-categorical) analogue of this result in work of Simpson [Sim90] concerning a
similar equivalence with the category of filtered vector spaces.

In spectral algebraic geometry, there are two different notions of the affine line that only coincide
rationally. To recover the main result of this section concerning quasicoherent sheaves on a quotient of the
affine line, we use what is called the flat affine line in spectral algebraic geometry. This is the affine spectral
scheme associated to the E∞-ring spectrum obtained as the suspension spectrum of the monoid N in spaces:

A1 = A1
♭ := Spec(S[N]),

where the latter equivalent notations for the suspension spectrum simply emphasises that the latter is to
be viewed as a polynomial E∞-ring spectrum on one variable. The essential subtlety in spectral algebraic
geometry is that this polynomial E∞-ring is not the free E∞-ring in one variable over S. The latter is denoted
S{?} (its spectrum is called the smooth affine line), and obtained as

S{?} %
⊕
%≥0

SΣ% .
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In fact, the suspension spectrum
S[N] = S[?] %

⊕
%≥0

S

is only the free E1-algebra on a single variable, but can be upgraded to an E∞-algebra. Working with the flat
affine line is often preferable, since its underlying ring spectrum is a suspension spectrum, whence it is easy
to define maps out of it. Further, the homotopy groups of the latter are easily seen to be given by

#∗S[?] ! (#∗S)[?],

which is not true for the smooth affine line.
One can then follow a similar construction to obtain the spectral analogue of the multiplicative group

scheme, namely:
G! := Spec(S[Z]),

where we now take the suspension spectrum on the discrete (grouplike) monoid Z in spaces. No notion of
an affine line is complete without a G!-action by scaling, and as in the classical case, this action is obtained
as dual to a coaction

S[N]→ S[N] ⊗ S[Z].
The latter arises as the suspension of the map of monoids

N→ N × Z

obtained as the product of the identity of N and the monoidal inclusion N → Z. On affine schemes, this
then induces the scaling action map

G! × A1 → A1.

Although the stack A1/G! is not a quotient by a free action, hence should really be interpreted as a higher
stack, the quotient is constructed as the realisation of a simplicial object in the∞-category Shvfpqc(CAlgcn , S)
with particularly nice properties, making it into a geometric stack (cf. Corollary 9.3.1.4 in [Lur18]). The
∞-category of quasicoherent sheaves on these stacks are well behaved, since it can be obtained as the
totalisation of a cosimplicial diagram of module categories. We list three important properties.
Proposition 7.1 ([Mou21] Proposition 2.2). Let X be a geometric stack, then the ∞-category QCoh(X) is pre-
sentably symmetric monoidal, and possesses a natural bicomplete t-structure compatible with the symmetric monoidal
structure.

To further analyse this stack, let us note that G! acts freely on G! ⊂ A1, while it acts trivially on the point
0 ⊂ A1. Therefore, the quotient can be seen as a point G!/G! % Spec(S) and a classifying stack 0/G! % @G! .
Therefore, we can reconstruct quasicoherent sheaves on the entire quotient stack by gluing together sheaves
on @G! and Spec(S). The latter is affine, so that there is a tautological equivalence

QCoh(Spec(S)) %Mod(Sp;S) % Sp

of stable presentably symmetric monoidal∞-categories. As for @G! , let us recall that classically a G!-action
on a scheme induces a grading on quasicoherent sheaves. The same turns out to be true in our situation,
and we obtain

QCoh(@G!) % SpGr.

Proposition 7.2 ([Mou21], Theorem 4.1). There is a symmetric monoidal equivalence

QCoh(@G!) % SpGr

between quasicoherent sheaves on the geometric stack @G! and graded spectra.

The complete proof requires more spectral algebraic geometry than can be covered here, but we will
sketch an outline of the proof for completeness. For a rigorous discussion, see [Mou21].
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Proof. Recall that quotient stacks are constructed using a geometric realisation

@G! % |G•
! |,

as in [Lur18] Example 9.1.1.7. In particular, this means that the (symmetric monoidal) ∞-category of
quasicoherent sheaves on the former can be recovered as a totalisation of a cosimplicial diagram of symmetric
monoidal left adjoints obtained as pullbacks along the simplicial structure maps above, following [Lur18]
Definition 6.2.2.1. Since G! was constructed as G! = Spec(S[Z]), we see that this fits in an augmented
cosimplicial limit diagram in CAlg(PrL

St), or equivalently in PrL
St:

QCoh(@G!)→Mod(Sp;S[Z]∧•).

It is therefore sufficient to show that SpGr also shows up as the limit of this diagram. Indeed, let us choose
a new augmentation given by

SpGr →Mod(Sp;S[Z]∧0) % Sp : 3★ ↦→
⊕
%∈Z

3% .

This is the left adjoint to the constant functor Sp → SpGr, or equivalently the left adjoint to the pullback
along the map Z* → Δ0. Therefore, we see that it is a symmetric monoidal left adjoint by the universal
property of the Day convolution8. To show that the augmented cosimplicial diagram obtained as such is
also a limit diagram, we simply need to verify a descent condition formulated in [Lur17] Corollary 4.7.5.3.
These conditions are largely formal. Indeed, the augmentation is easily seen to be conservative, since we are
working in the additive setting so that any term 3% of a graded spectrum 3∗ is a retract of its image under
the augmentation by the identity composite

3% →
⊕
!∈Z

3!
∼−→

∏
!∈Z

3! → 3% .

The adjointability conditions holds for any geometric stack, and the condition that SpGr admits geometric
realisations, which are preserved by the augmentation if they are split by it, is an immediate consequence of
the fact that SpGr is equivalent to a Z-indexed product of Sp, so that this can be checked on every factor. !

Using this identification, one can proceed to describe QCoh(A1/G!). Once again, we will sketch the
proof of this result, which takes up Section 5 in [Mou21]. The key is to consider the essentially unique
morphism

2̃ : A1 → Spec(S),
along with its image after quotienting out by the G!-action on both sides:

2 : A1/G! → Spec(S)/G! % @G! .

This induces an adjunction

2∗ : SpGr % QCoh(@G!) QCoh(A1/G!) : 2∗.

In fact, one can show that the morphism 2 is of a particular type (quasi-affine quasi-representable morphism
of sufficiently nice stacks) that guarantees that this adjunction is monadic, i.e. one can identify

QCoh(A1/G!) %Mod(QCoh(@G!); 2∗1QCoh(A1/G! )).
8This observation is actually a nontrivial consequence of the monoidal properties of ∞-categories of presheaves of spectra on a

space viewed as a symmetric monoidal∞-groupoid, e.g. Z* or Δ0. In fact, one can view the result as a variant of parametrised spectra
with Day convolution. The claim above is a direct consequence of [ABG18] Proposition 6.12
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The algebra object on the right hand side is precisely the pushforward along 2 of the structure sheaf OA1/G! .
This can be analysed as a spectrum. Indeed, there is a commutative diagram

A1 A1/G!

Spec(S) @G!

#̃

2̃ 2

#

per construction of 2̃ and the quotient maps #̃,#. This is clearly a pullback square of stacks, so that one
may use another property of quasi-affine quasi-representable morphisms as in [Lur18] Proposition 6.3.4.1,
which tells us that the induced diagram of left adjoints on QCoh is right adjointable, i.e. such that the
Beck–Chevalley transformation

#∗2∗ → 2̃∗#̃∗

is an equivalence. In particular, this tells us that there is an equivalence

#∗2∗OA1/G! % 2̃∗#̃∗OA1/G! ,

% 2̃∗OA1 ,
% S[N],

where we used that #̃∗ is monoidal, and the fact that the global sections functor 2̃∗ takes the underlying
spectrum of an S[N]-module viewed as a quasicoherent sheaf on A1.

At this stage, we know what the underlying spectrum of 2∗OA1/G! looks like, but not its structure as a
graded spectrum. This requires an alternative description of graded spectra as spectra with a comodule
structure over the Hopf algebroid S[Z], which we will not describe in this summary. In fact, if one analyses
the G!-action on A1 more closely, which amounts to analysing the S[Z]-comodule structure on S[N] above,
one sees ([Mou21] Proposition 5.1) that 2∗OA1/G! is the graded spectrum denoted S[?] which consists of
a sphere spectrum S in every grading degree % ≤ 0 and zeroes elsewhere. We conclude that there is an
equivalence

QCoh(A1/G!) %Mod(QCoh(@G!); 2∗OA1/G! ) %Mod(SpGr;S[?]).

To identify the right hand side of this chain of equivalences, we see that it fits in the adjunction

4 : SpGr SpFil : < ,

defined in Definition 5.2. Indeed, it is clear that

S[?] % <1Fil ,

so that monoidality of the adjunction above (it is induced by a strict monoidal functor Z* → Z) gives rise to
a factorisation

4 : Mod(SpGr;S[?]) SpFil : < ,

which we claim is an equivalence. Of course, this is nothing else than checking that the original adjunction
4 2 < is monadic. This follows immediately from the observation that the adjunction above witnesses SpFil

as an SpGr-algebra in PrL
St, so that we can apply our variant of the Schwede–Shipley theorem with & = Z*.

Indeed, we see that MapZ* (1Fil ,−) is a conservative functor on SpFil, since equivalences of filtered spectra
are precisely maps ) of filtered spectra that are equivalences at every level, i.e. such that for all integers
%, the map Map(1Fil(%), ) ) is an equivalence. These assemble for all % to form the equivalences of graded
spectra MapZ* (1Fil , ) ). Now note that the original adjunction was monoidal, so that the algebra showing up
in the Schwede–Shipley result is none other than the image of the unit of SpFil under the lax monoidal right
adjoint, i.e S[?].

We conclude that the chain of equivalences above can be extended to a symmetric monoidal equivalence

QCoh(A1/G!) %Mod(QCoh(@G!); 2∗OA1/G! ) %Mod(SpGr;S[!]) % SpFil.
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Remark 7.1. Unfortunately, the deformation picture given above is not as geometric as one might hope.
Indeed, the flat affine line is not naturally a free E∞-algebra, so that it induces a variety of complications
with respect to E%-structures. Concretely, if one works in nonconnective spectral algebraic geometry using
e.g. even ring spectra as opposed to connective ring spectra, one would have to work with grading shifts
of this polynomial E∞-algebra, such as even versions, which can no longer be promoted to E∞-ring spectra.
Fortunately, this problem can be patched on the level of noncommutative stacks. More specifically, the
module ∞-category Mod(SpGr;S[?]) does not depend on any shifts of S[?]. Therefore, we have decided to
keep working with the flat affine line, since:

• It is similar in construction to the classical affine line, whose quotient A1/G! classifies extended
Cartier divisors. Furthermore, it has been related to filtrations on cohomology in work of Simpson as
previously mentioned.

• It still gives us the correct results on noncommutative stacks, as well as the fundamental intuition
behind geometric deformations:

QCoh(A1/G!) % SpFil.

If we are actually interested in the spectral stacks underlying these deformations, it is important that we
use the correct spectral analogue of the classifying stack of extended Cartier divisors–the latter controlling
one-parameter deformations of stacks–which is given by the stack CDiv†

eff of [Gre21]. See section 2.2 in op.
cit. for a detailed description of this stacks, as well as the comments brought up in this remark.

7.1.2 The fibres of A1/G! .

To study and define deformations in general, let us begin by analysing the universal deformation, namely
the identity map of A1/G! , or equivalently the initial SpFil-algebra: SpFil itself. Geometrically, we noted that
the special fibre at ! = 0 of this deformation is precisely the fibre over @G! , while the generic fibre consisted
of the generic points that get collapsed to Spec(S). This gives us an immediate definition of what the generic
and special fibres of a deformation should be in terms of geometric intuition. Indeed, note that there are
obvious inclusion morphisms of spectral stacks

Spec(S) 1−→ A1/G!
0←− @G! ,

whose pushforwards on quasicoherent sheaves should correspond to the inclusion of the generic and special
fibres respectively. In fact, this is the content of Theorem 2.2.10 in [MRT19], which states that there is a
commutative diagram of symmetric monoidal left adjoints

Sp SpFil SpGr

QCoh(Spec(S)) QCoh(A1/G!) QCoh(@G!),

Re gr

1∗ 0∗

where the vertical arrows are the previously established equivalences. In particular, this tells us that the
realisation and associated graded functors we constructed earlier arise from this geometric picture as well.
We will see later that these fibres of the stack A1/G! and the left adjoints associated to their inclusions can
be tensored up to more general deformations to determine their generic and special fibres as well. For now,
let us recall the simple observation

Sp % SpFil[!−1] ⊂ SpFil , SpGr %Mod(SpFil;#!)
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from our discussion on filtered spectra to extend this commutative diagram to

SpFil[!−1] SpFil Mod(SpFil;#!)

Sp SpFil SpGr

QCoh(Spec(S)) QCoh(A1/G!) QCoh(@G!),

!−1 #!⊗−

Re gr

1∗ 0∗

where the vertical arrows are still equivalences. This translation of the geometric picture in terms of the
thread operator ! will be helpful in describing more general deformations as will be done in the following
section.

7.2 Geometric deformations
Inspired by the previous section, in which we saw that the geometric stack A1/G! controls one-parameter
deformations with a special fibre and a generic fibre, as well as the observation that QCoh(A1/G!) % SpFil,
we give a definition of what a deformation of homotopy theories should be based on geometric intuition.
Definition 7.1. A geometric deformation is a stable presentably symmetric monoidal ∞-category with
the structure of an SpFil-algebra in PrL

St. Additionally, we will assume that deformations are Z-plurigenic,
i.e. admit a compact generator with respect to SpFil-enriched mapping objects.
Remark 7.2. Just as in abelian groups, where an algebra object in the category of modules over a base ring
is equivalent to an algebra object in abelian groups admitting a ring map from said base ring, we have a
similar result in PrL

St, namely [Lur17] Corollary 3.4.1.7. This tells us that

CAlg(Mod(PrL
St; SpFil)) % CAlg(PrL

St)SpFil/.

In particular, we can think of deformations of stable homotopy theories simply as stable homotopy theories
admitting a symmetric monoidal left adjoint from SpFil

Remark 7.3. Note that the definition is a direct translation of the geometric picture. Indeed, if a one-
parameter deformation of stacks is a family sitting over A1/G! , then applying the functor

QCoh∗ : Shvfpqc(CAlgcn)→ PrL
St

that sends a spectral stack to its ∞-category of quasicoherent sheaves and morphisms ) to their pullbacks
) ∗–precisely the embedding of stacks into noncommutative stacks–should send it to a deformation. More
precisely, some

) : X→ A1/G!
gets sent to the deformation of homotopy theories

) ∗ : SpFil → QCoh(X).

Remark 7.4. Note that the assumption that D be Z-plurigenic is not strictly necessary from the geometric
picture, but it is very useful for identifying the generic and special fibres of a deformation. Concretely, if 1D
is the compact generator for D in an appropriately enriched sense, then

" : D→ SpFil

becomes conservative. Indeed, since - is symmetric monoidal, it corresponds to (the SpFil-linearisation) of
the map picking out the object 1D in D, so that its right adjoint is given by

" = MapZ(1D ,−).



7 DEFORMATIONS 45

By the filtered Schwede–Schipley theorem, this allows us to factor - 2 " as an equivalence

D %Mod(SpFil; End&D(1D)).

Given this geometric intuition, it is hopefully clear why we have given such a precise construction and
description of filtered spectra: they are the universal deformation of homotopy theories. Further, by the
definition above, they control all other deformations. In fact, many notions intrinsic to deformations of
homotopy theories are simply "tensored up" from filtered spectra as will be made rigorous later. The
author’s hope is that this geometric description–albeit not entirely rigorous due to the theory of spectral
algebraic geometry being too hefty to summarise in this work–gives the reader an intuitive idea of why
filtered objects are omnipresent in these deformed homotopy theories.

Let D now be a deformation of homotopy theories, and let

- : SpFil D : "

be the symmetric monoidal left adjoint and its (lax monoidal) right adjoint witnessing this structure. We
immediately note the following things.

• By monoidality, we see that -(1Fil) % 1D. Now we extend this by defining

∀% ∈ Z : 1D(%) := -(1Fil(%)).

Since - is symmetric monoidal, it is clear that we recover the relation

1D(%) ⊗ 1D(!) % -(1Fil(%) ⊗ 1Fil(!)) % 1D(% + !).

In particular, all of these twists of the unit are dualisable objects.
• Recall that filtered spectra have a thread structure

! : 1Fil(−1)→ 1Fil.

We denote the image of this under - by !D.
• Since - commutes with colimits, we see that

#!D % -(cof(1Fil(−1) !−→ 1Fil) % -(#!),

so that #!D has the structure of a commutative algebra object in D by monoidality of -.
• This allows us to define subcategories of D just as in filtered spectra:

D[!−1
D ], Mod(D, #!D), D∧!D .

Where the first and last full subcategories participate in a recollement

D[!−1
D
] D D∧!D .

Essential to the geometric picture is that the notion of the special and generic fibres of a deformation are
given quite naturally.
Definition 7.2. Let D be a deformation of homotopy theories, as exhibited by the symmetric monoidal left
adjoint

- : SpFil → D.
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Now consider the right adjoints induced by the inclusion of the generic resp. special fibre

Sp #A−−→ SpFil >←− SpGr

We then define the generic fibre GF(D) and special fibre SF(D) of the deformationD to be the fibre products
(taken in PrR

St, ergo equivalently in Cat∞ by [Lur09] Theorem 5.5.3.18)

GF(D) D SF(D) D

Sp SpFil , SpGr SpFil.

! " ! "

Cs >

Geometrically, these are the fibres of the noncommutative stack D over Spec(S) and @G! respectively,
whence the terminology.
Remark 7.5. Since the functor Cs is a fully faithful functor arising as the inclusion of a full subcategory,
and these are closed under pullbacks in Cat∞, we see that the generic fibre can be seen as a full subcategory
of D.
Proposition 7.3. There is an equivalence

GF(D) % D[!−1
D ]

between the generic fibre of the deformation D and the !-invertible objects.

Proof. This is now a rather immediate consequence of our setup. Indeed, " is a conservative functor, being
constructed as the enriched mapping object out of the unit in a Z-plurigenic homotopy theory.

Let 3 be some object of D, with the map

3 ⊗ !D : 3(−1) := 3 ⊗ 1D(−1)→ 3 .

Since 1D is an SpFil-enriched generator, we see that 3 ⊗ ! is an equivalence if and only if

"(3 ⊗ !) : "(3(−1)) = MapZ(1D ,3(−1))→MapZ(1D ,3)

is an equivalence. However, note that the SpFil-enriched mapping objects are defined by

MapZ(1D ,3)★ %Map(1D(★op),3),

so that "(3 ⊗ !) is simply the shift map on the filtered spectrum MapZ(1D ,3). This means that 3 ⊗ ! is an
equivalence if and only if the filtered spectrum

MapZ(1D ,3) = "(3)

is !-invertible, i.e. lies in the full subcategory Sp ↩→ SpFil. This is precisely equivalent to the condition that
3 lies in the pullback defining the generic fibre, whence we conclude.

Having checked this explicit description of the pullback on the level of objects, we do not need to check
it on mapping spaces, since we showed earlier that the generic fibre is a full subcategory of the deformation,
just like the !-invertible subcategory. !

Proposition 7.4. There is an equivalence

SF(D) %Mod(D;#!)

between the special fibre of the deformation D and the #!-modules.
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Proof. Once again, this follows from the definition of the special fibre as a pullback in PrR
St. Note that by

duality, we can also compute this as a pushout in PrL
St. Once again, we need the assumption that D is

Z-plurigenic to apply the filtered Schwede–Shipley theorem and obtain

D %Mod(SpFil; EndZ
D(1D)).

For brevity, we shall denote EndZ
D(1D) by $. Noting that

SpGr %Mod(SpFil;#!),

we see that the defining diagram for the special fibre can be rewritten as

SpFil Mod(SpFil;#!)

Mod(SpFil;$) SF(D).
"

This pushout is now computed in PrL
St, or even in Mod(PrL

St; SpFil). At this point, we need some more
advanced machinery. This comes in the form of [LT19] Theorem 1.10, or [Lur17] Proposition 7.1.2.6. This
tells us that there is a fully faithful functor

AlgE1
(SpFil)→ AlgE0

(Mod(PrL
St; SpFil)),

with right adjoint (and partial inverse) sending an element of the target, which one can easily verify consists
of an SpFil-module M with a distinguished object !, to the E1-algebra EndZ

M(!). Finally, note that there is a
forgetful functor

AlgE0
(Mod(PrL

St; SpFil))→Mod(PrL
St; SpFil))

that commutes with pushouts. More precisely, cf. [Lur17] Corollary 4.8.5.13, it commutes with colimits
indexed by weakly contractible simplicial sets. We conclude that the pushout in the latter can be lifted to
a pushout in the source by equipping each of the terms in the puhsout diagram with the structure of an
E0-algebra simply by marking it at the unit 1D, resp. 1Gr. Since this lies in the image of the embedding of
E1-algebras in filtered spectra into the source of the forgetful map, we can once again lift these and identify
them with the algebras $, #! in SpFil respectively. Now one can simply take the pushout in this∞-category,
and run our (pushout-preserving) functors the right way to obtain a description of the pushout of SpFil-
modules. Identifying the pushout of the E∞-algebra #! and the E1-algebra $ over 1Fil can be tricky a priori,
but the commutativity of #! drastically simplifies the situation. Indeed, it allows us to apply Theorem 3.6
from [HL21] in the case ' = 1. This theorem essentially tells us that the pushout

#! 11Fil $

in AlgE1
(SpFil) can be identified (as an E1-algebra) with the tensor product

#! ⊗1Fil $.

Concretely, we obtain
SF(D) %Mod(SpFil;$ ⊗1Fil #!).

This∞-category of ($, #!)-bimodules can finally be identified with

SF(D) %Mod(Mod(SpFil;$);#!)) %Mod(D;#!)

to obtain the desired result. !
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7.3 BHS deformations
Having given a geometric motivation for what deformations of homotopy theories (a.k.a. noncommutative
stacks) should be, we proceed to give a more practical description of deformations in terms of a realisation
functor and a choice of graded objects. This approach is described by Burklund–Hahn–Senger in [BHS20],
and we will only slightly adapt their approach. We end this section with an equivalence between Burklund–
Hahn–Senger’s deformations and our geometric deformations. This allows us to use both frameworks
interchangeably.
Definition 7.3 ([BHS20], C.13). A BHS deformation is a diagram

C
*−→ D

Re−→ C

in CAlg(PrL
St) such that the composite Re ◦* is the identity. Additionally, we require the datum for every

% ∈ Z of an invertible element 1D(%) in D that gets sent to the unit 1C. These should assemble to a group
homomorphism

Z→ ker Pic0 Re,
in the sense that for every % ,! ∈ Z we should have an equivalence

1D(%) ⊗ 1D(!) % 1D(% + !).

and in particular 1D(0) % 1D. Finally, we require that Re induces an equivalence on mapping spaces

mapD(1D(%), 1D(!)) ∼−→ mapC(1C , 1C)

for every % ≤ ! ∈ Z

Remark 7.6. Note that the last condition can be applied for % = 0 ≤ 0 = ! to obtain a series of equivalences

mapD(1D(%), 1D(!)) % mapC(1C , 1C) % mapD(1D , 1D).

In fact, this allows us to rewrite the data of the invertible elements in a more succinct way, i.e. as an
increasingly filtered object

1(★op) : Z→ D

such that the composite Re1(★op) is the constant filtered object Cs1C.
Remark 7.7. In most cases of interest, the base category C to be deformed is precisely the ∞-category of
spectra Sp. In that case, since Sp is the initial object of PrL

St and the composite Re ◦ * of left adjoints would
be a left adjoint from Sp to itself, we conclude that it is automatically equivalent to the identity.

This definition is expressed entirely in terms of the datum of two symmetric monoidal left adjoint functors
and a compatible datum of invertible objects, so that it is useful in identifying deformations of homotopy
theories in the wild. However, as also elaborated in [BHS20], we see that the datum of a deformation as
above actually recovers the more formal notion of a deformation in terms of filtered spectra. Indeed, one
can upgrade D to an SpFil-algebra in PrL

St with generic fibre C and the local filtration given precisely by the
shifts of the unit 1D(%).
Theorem 7.1. The datum of a deformation as in Definition 7.3 gives rise to the structure of a deformation on D i.e.
D obtains the structure of a SpFil-algebra in PrL

St.

Proof. First, let us recall that due to the equivalence CFil % SpFil ⊗ C, we can reduce to showing that D is an
SpFil-algebra, and then use the given left adjoint * : C→ D to tensor this up to a SpFil ⊗ C % CFil-algebra.

Now recall that the datum of an SpFil-algebra structure on D is equivalent to the datum of a symmetric
monoidal left adjoint SpFil → D. Further, let us note that SpFil = Fun(Zop , Sp) is obtained as the stabilisation
of the presheaf categoryFun(Zop , S), which itself is obtained as the colimit completion of Z. Additionally, re-
call that the symmetric monoidal structures on stabilisations or colimit completions of (small)∞-categories
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were obtained precisely by the universal property that the corresponding left adjoints to inclusions be sym-
metric monoidal. Therefore, one can reduce the datum of a symmetric monoidal left adjoint of presentable
stable∞-categories of the form

SpFil % Sp(Fun(Zop , S)) % Sp(P(Z))→ D

to the datum of a symmetric monoidal functor

Z→ D.

This will be provided precisely by the data of the shifts 1D(%). Indeed, the final condition in Definition 7.3
and the remark below gives us an equivalence

mapD(1D(%), 1D(!)) % mapD(1D , 1D).

Therefore, for any morphism % ≤ ! inZ, we let the morphism from 1D(%) to 1D(!) be the one corresponding
to the identity of 1D in the equivalence above. At this point, we need to be careful with the ∞-category
theory going on, since we are actually considering functors from the ∞-category BZ into D. This means
that it does not suffice to simply define morphism corresponding to every % ≤ !, but that one also ought
to define composite morphisms and compatible homotopies between them expressing them as composites.
However, we are able to get away with the simple construction above, since the obvious map of simplicial
sets

4 :=
⋃
/∈Z

Δ{/−1,/} → BZ

classifying the morphisms between adjacent integers is inner anodyne (cf. [Ari21] Prop 3.3), so that the
morphism

4→ D

defined by (% ≤ % + 1) ↦→ (1D(%)→ 1D(% + 1)) extends uniquely to a morphism

BZ→ D

as desired. This is the content of Lemma 7.1. Having established this functor, it is clear that it is symmetric
monoidal per construction since we enforced 1D(%)⊗ 1D(!) % 1D(% +!), and all morphisms between them
correspond to the identity on 1D. We conclude that it induces a symmetric monoidal left adjoint SpFil → D
as desired. !

Lemma 7.1. The aforementioned inclusion 4→ BZ is an inner anodyne map of simplicial sets.

Proof. The fact that this inclusion is inner anodyne can be seen by observing that BZ is obtained from 4 by
adjoining coherent composites. Concretely, if one lets ," denote the subsimplicial set of 4 defined by

," :=
⋃

−"≤/−1≤/≤"
Δ{/−1,/} ,

viewed as the spine ," = spine(Δ[−" ,"]), then one can consider the gluing

," Δ{−" ,"}

4 9" ,
"

where the interval ," has been replaced by the simplexΔ[−" ,"], i.e. we have adjoined all coherent composites.
Then we obtain BZ as the directed colimit

BZ % colim
"≥0

9" .



7 DEFORMATIONS 50

It then suffices to note that in the pushout

Δ{−"−1,−"} ∪ Δ[−" ,"] ∪ Δ{" ,"+1} 9"

Δ[−"−1,"+1] 9"+1 ,
"

the left vertical arrow is inner anodyne as a generalised spine inclusion, so that by cosaturation the inclusion
map 9" → 9"+1 is inner anodyne as well. We conclude our argument by noting that 90 % 4 so that the
inclusion 4→ BZ is a transfinite composition of inner anodyne morphisms, hence inner anodyne itself. !

In fact, this lemma is very often used implicitly when constructing filtered objects.
Note that the theorem above only gives D the structure of a deformation, but does not necessarily

determine the generic and special fibres of D in terms of the given information. The definition clearly hints
at C being the generic fibre of D, but for this to be true, we need to impose a slightly stricter condition on
the deformation in the form of a conservativity (or monadicity) condition.
Proposition 7.5 ([BHS20], C.19). Let C → D → C be a BHS deformation as in Definition 7.3. If we further
assume that C is generated by a family of compact dualisable objects 9(, such that the objects *(9() ⊗ 1D(%) form a
family of compact dualisable generators for D, then the previously constructed adjunction

CFil D

is monadic.

Remark 7.8. In fact, this assumption (which is imposed on all deformations on op. cit.) corresponds
precisely to a Z-plurigenicity assumption on D–albeit in in C-linear form. Indeed, let us assume that C = Sp
for the moment, since all other cases can be tensored up from it. Then * is the essentially unique symmetric
monoidal left adjoint picking out the unit of D, so this amounts to asking that the twists 1D(%) are a family
of compact generators for D (they are clearly dualisable). Since SpFil-enriched mapping objects in SpFil are
obtained precisely by these twists, such that the right adjoint structure map

" = MapZ(1D ,−) = Map(1D(★op),−) : D→ SpFil

is given by mapping out of twists of the unit, we see that the requirement above is precisely that D be
Z-plurigenic. We can then apply our theory of Z-plurigenic geometric deformations of homotopy theories
to see that the filtered Schwede–Shipley theorem applies, and D can be realised as

D %Mod(SpFil; EndZ
D(1D)) %Mod(SpFil; MapD(1D(★op), 1D)).

Combining the main theorem above with the monadicity result below, we see that these two notions of
deformations really are equivalent.
Corollary 7.1. The structure of a geometric deformation on some stable presentably symmetric monoidal∞-category
D is equivalent to the datum of a BHS deformation.

Proof. We saw in Theorem 7.1 that any BHS deformation is a geometric deformation in an essentially unique
way. Further, we saw that the usual monadicity assumption on BHS deformations is none other than a
Z-plurigenicity condition on its associated geometric deformation.

Conversely, given the structure of a geometric deformation on D, we can construct a BHS deformation
by considering the diagram

GF(D) *−→ D
Re−→ GF(D).

Indeed, we know that D is an GF(D)-linear ∞-category by the construction of the latter, so that we simply
consider the unit * of D viewed as an GF(D)-algebra, along with the !-inversion map Re left adjoint to its
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inclusion. The composite is equivalent to the identity because it a symmetric monoidal left adjoint functor
of SF(D)-algebras, hence essentially unique. Now we choose the dualisable objects in D to be precisely the
twists 1D(%) induced by the structure of a geometric deformation. These are dualisable per construction,
and satisfy the monoidality relation in the index %. Further, per definition of the generic fibre there is a
commutative square of symmetric monoidal left adjoints

D GF(D)

SpFil Sp.

Starting with the twists 1Fil(%) in the bottom left corner, we see that they are sent to the !-inversion of 1D(%)
by one path, and send to the unit 1GF(D) by the other. Indeed, we verified that these twists of the unit in
filtered spectra realise to the sphere spectrum, and by monoidality this must be sent to the unit in the generic
fibre. We conclude that these define elements in kerPic0Re.

In fact, since the generic fibre is a full subcategory of D, and one easily verifies that map(1Fil(%), 1Fil(!))
is equivalent to map(S,S) as induced by the realisation functor; we conclude that the condition on mapping
spaces holds as well.

Finally, it is clear that these two operations are mutually inverse, whence one obtains an equivalence
between geometric deformation structures on D and BHS deformation structures on D. !

Remark 7.9. Note that most of the proof above just consisted of showing that SpFil is a deformation in the
sense of [BHS20], and then tensoring up these results to an arbitrary geometric deformation.
Remark 7.10. Note that this picture of deformations does not give us an explicit characterisation of the
special fibre. Instead, this must be recovered by viewing a BHS deformation as a geometric deformation,
and recovering the special fibre as

SF(D) = Mod(D;#!).

Example 7.1. Let us illustrate the construction above with an example of a deformation that is not hard to
construct. We claim that the∞-category of cochain complexes of spectra K(Sp) introduced in Definition 5.4
admits the structure of a deformation of Sp. In fact, it can be described rather explicitly.

• Given an integer %, consider the invertible object of K(Sp) given by the cochain complex 1K(%) that
takes the value S% in degree % and 0 elsewhere. It is clear that this defines a cochain complex.

• Now given integers ! , %, note that the tensor product 1K(%)⊗ 1K(!) of cochain complexes is such that

(1K(%) ⊗ 1K(!))C =
⊕
C="+/

1K(%)" ∧ 1K(!)/ =
{
S! ∧ S% , C = ! + % ,
0, else,

i.e. it is clearly equivalent to 1K(! + %).
• If ! ≤ %, we see that the mapping space

map(1K(!), 1K(%))
can be described explicitly. When ! = %, it is clear that one only needs to define a map on the nonzero
degrees, so that

map(1K(!), 1K(!)) ! map(S! ,S!) ! map(S,S).
If % = ! + 1, we see that the space of such maps is precisely the space of vertical maps making the
diagram

,! 0

0 ,!+1

,!+1

,!+1
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commute, the rest being zero maps between zero objects. Now by the universal property of the
pullback it suffices to give just one map from S! to the pullback of this diagram, and the latter is
precisely the loop Σ−1S!+1 % S! , so that we conclude similarly as before. This procedure can then be
iterated for any ! < %, taking successive pullbacks until we need only define a map S! → Σ!−%S% ,
and we conclude that all mapping spaces of the form above are equivalent to the endomorphism space
of the sphere spectrum.

Just the data above defines a functor
1K(★op) : Z→ K(Sp),

and it is then a consequence of the reasoning above that one can integrate it to an adjunction

- : SpFil K(Sp) : ".

Note that the right adjoint is given by

"3★ = Map(1K(★op ,3)),

while the left adjoint per construction sends the shifted filtered spectrum 1Fil(%) to the cochain complex
1K(%) defined above.

We will now give a more explicit description of the left adjoint. First, let us consider another functor

Σ∗gr∗ : SpFil → SpGr.

In fact, this only defines a graded spectrum, but we see that there are connecting maps induced by the
filtered structure. Indeed, consider the defining cofibre sequence associated to a filtered spectrum 3

3%+1 → 3% → gr%3 ,

or equivalently after applying the left adjoint Σ% :

Σ%3%+1 → Σ%3% → Σ%gr%3 .

By the triangulation on a stable∞-category, one can shift this to a cofibre sequence

Σ%3 → Σ%gr%3 → Σ%+13%+1.

Now the final term in this sequence admits a map to Σ%+1gr%+13 as the image under Σ%+1 of the quotient
map. Therefore, we see that there are connecting maps

Σ%gr%3 → Σ%+1gr%+13 .

If we now consider a composite of the form

Σ%gr%3 → Σ%+1gr%+13 → Σ%+2gr%+23 ,

we can write this out more fully using the definition of the connecting maps as

Σ%gr%3 → Σ%+13%+1 → Σ%+1gr%+13 → Σ%+23%+2 → Σ%+2gr%+23 .

If we now focus on the middle three terms, forming the sequence

Σ%+13%+1 → Σ%+1gr%+13 → Σ%+23%+1 ,

we see that this is the triangulated shift of the cofibre sequence

Σ%+13%+2 → Σ%+13%+1 → Σ%+1gr%+13 .
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Now this composite is obviously null since it is a cofibre sequence. We conclude that the original composite
of connecting maps was zero as well. In conclusion, the functor

Σ∗gr∗ : SpFil → K(Sp)

lifts to a functor with values in cochain complexes of spectra. Its values on some simple filtered spectra
are easy to understand. Indeed, consider the shifted unit 1Fil(%) in filtered spectra. Since this filtration is
composed almost entirely of identities save for one map 0→ S in filtration degree %, we see that

Σ∗gr∗(1(%)) =
{
Σ%cof(0→ S) % S% , ∗ = % ,
0, else.

and the result is the chain complex 1K(%). If ! < % and we are given the canonical morphism

!%−! : 1Fil(!)→ 1Fil(%)

induced by inserting identities on the sphere spectra in filtration range between ! and %, then the induced
map on associated gradeds arises from the diagrams of the form below (illustrating the case % = ! + 2)

· · · S S 0 0 0

S S S 0 0 · · ·

· · · 0 0 S! 0 0 · · ·

· · · 0 0 0 0 S!+2 · · ·

S S S S S · · ·

· · · S S S S 0

= = = = = =

= = = = = =

in which the top and bottom rows represent the filtered spectra 1(!) and 1(! + 2) respectively, running
from right to left. They are depicted such that the long vertical dashed arrows represent the maps onto the
cofibres (albeit shifted up in every degree). Then the dotted horizontal arrows are the structure maps of the
corresponding cochain complexes, while the short vertical arrows constitute the map of cochain complexes
obtained by functoriality. The observation to make here is that the induced map of cochain complexes

1K(!)→ 1K(%)

is none other than the map which is induced by the identity of S! , seen as a map from S! to the (%−!)-fold
iterated pullback of S% along the trivial spectrum, i.e. it is none other than the original structure map
between shifted units that was part of the deformation structure.

The conclusion of this discussion is that the functors

-,Σ∗gr∗ : SpFil → K(Sp)

agree on the full subcategory of generators 1K(%). Since they are both left adjoints, either by construction or
since Σ and gr are left adjoints, we conclude that they agree on all filtered spectra, whence we have obtained
an explicit description of -.



7 DEFORMATIONS 54

7.4 Deformations and recollements
Now that we have two pictures of what a deformation should be, and have shown that they are equivalent,
we would like to obtain a method of describing these deformations in terms of their special and generic
fibres. This reconstruction will come in the form of a recollement associated to any deformation

In fact, since we have a geometric picture of deformations arising from our consideration in terms
of noncommutative stacks over A1/G! , we can describe the recollement associated to a deformation in a
geometric way. For this, let us recall that a recollement is classically induced by the inclusion of a closed
subscheme and its open complement. We can consider the inclusion

@G! ↩→ A1/G!

of the closed substack @G! as a stratification along [0 ≤ 1], to obtain a corresponding stratification on
QCoh(A1/G!) % SpFil.

First, let us note that any deformation has a thread operator ! shifting the grading in its natural filtration.
In the geometric deformation picture, i.e. for SpFil-algebras, this ! was obtained from the thread operator
on SpFil, and similarly for BHS deformations. In particular, this means that we can mimic the deformation
that arose in our discussion of filtered spectra, namely

Sp SpFil SpFil∧
! .

Note that this recollement arises purely from the datum of the thread operator !, and corresponds to the
decomposition in the !-invertible and !-complete subcategories.

Geometrically, recall that we identified

QCoh(Spec(S)) % Sp, QCoh(@G!) % SpGr.

As explained in the beginning of this section, we are interested in the recollement that arises from the
open-closed decomposition

@G! ↩→ A1/G! ←↪ Spec(S).
Now the open part is easy to identify. Indeed, we saw in the discussion of the geometry of filtrations that
the restriction to this open substack corresponded precisely to the realisation or !-inversion of a filtration.
We conclude that the resulting recollement has open part given by the (co)reflective subcategory

Sp % SpFil[!−1] ⊂ SpFil.

Now the closed part of the recollement is a little harder to identify, since it is not given by quasicoherent
sheaves on the closed subscheme, but by a formal completion of quasicoherent sheaves on the total scheme
along the closed subscheme. Since we do not want to describe the theory of completions along closed
substacks in spectral algebraic geometry, we decide to circumvent this. Indeed, by Proposition 6.3, only one
closed part can fit in this recollement, and it is the orthogonal complement. In the discussion on filtered
spectra, we computed that the orthogonal complement of the !-invertible filtered spectra were the complete
filtrations. Therefore, we see that the recollement arising from the geometric picture is precisely the same
one we constructed earlier.
Proposition 7.6. Let SpFil be the stable presentably symmetric monoidal ∞-category of filtered spectra. Viewing
this as a category of filtrations, the universal noncommutative stack with a dualisable commutative algebra object #!,
and as quasicoherent sheaves on A1/G! , we obtain three recollements:

• A recollement where the open part consists of constant filtrations on their colimit, and the closed part consists of
complete filtrations.

• A recollement where the open part if the !-invertible subcategory, and the closed part is the !-complete subcategory.
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• A recollement where the open part is the subcategory of quasicoherent sheaves on Spec(S), and the closed part is
the completion of SpFil along quasicoherent sheaves on @G! .

These recollements all agree.

Proof. This is now an immediate consequence of the discussion above. !

The use of this observation is that it makes it easier to construct recollements on deformations. Indeed,
as noncommutative stacks over A1/G! , they can be decomposed according to the generic fibre and their
formal completion along the special fibre, but does not admit any sort of intuitive description. We therefore
opt to use the second recollement as the canonical one, and decompose deformations along their !-invertible
and !-complete parts.
Definition 7.4. Given a deformation D with thread operator !D, let us define its associated recollement
to be the recollement associated to the dualisable commutative algebra object #!D, i.e.

D[!−1
D
] % GF(D) D D∧!D % D∧SF(D) .

In the notation above, we have used the fundamental result that the generic resp. special fibres of a
deformation can be recovered as the !-invertible objects resp. the #!-modules.

The value of this decomposition is that it allows us to solidify the idea of a deformation being the datum
of a generic fibre and a special fibre, along with some gluing information that encodes how they are stuck
together. In particular, we can apply our reconstruction theorem from the theory of recollements to obtain
a reconstruction
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8 Synthetic spectra
In this section, we come to the most important example of a deformation of homotopy theories that motivated
this work. It is given by the ∞-category of synthetic spectra based on an Adams type homology theory =
(seen as a commutative algebra in spectra). This construction was developed by [Pst18], with the goal of
understanding Adams towers of spectra, and has since found a variety of applications such as Burklund–
Hahn–Senger’s proof of a conjecture of Galatius and Randall-Williams in [BHS19]. In [BHS20], Burklund–
Hahn–Senger illustrate how synthetic spectra fit into their framework of deformations of homotopy theories,
spurring our discussion. We will begin by recalling the construction of synthetic spectra as in [Pst18], and
end the section with the main result; namely a description of synthetic spectra as a deformation of spectra.

We will now recall the construction and some fundamental facts about synthetic spectra, based on the
original paper [Pst18]. In this entire discussion, we will fix an Adams type homology theory =, upon which
our synthetic spectra will be based. For a definition of the former, see [Pst18] Definition 3.14.

8.1 Construction and basic properties
Synthetic spectra are defined in such a way that they recover the information coming from spectra, while
also encoding information about the =-homology of spectra. In fact, they admit a very simple description
as an∞-category of sheaves of spectra.

Recall that the ∞-category of spectra Sp is presentable, and that its compact objects are given precisely
by the finite spectra Sp'. The latter admit an interpretation as spectra weakly equivalent to a finite CW
spectrum. By the presentability of Sp, we therefore have an equivalence

Sp % Ind(Sp').
We now try to mimic this, while also incorporating information about the =-homology of spectra. For this,
let us define a full subcategory of finite spectra given by finite =-projective spectra.
Definition 8.1. Let Sp'

= be the full subcategory of Sp' on finite spectra 3 such that their =-homology =∗3
is a finite projective =∗-module.

Note that this ∞-category is not sufficiently nice for doing homotopy theory. Indeed, it is pre-additive,
since it is closed under finite direct sums and products in Sp' ⊂ Sp, but it lacks more colimits. Finally, note
that if

3 → 0 → 1

is a fibre sequence in Sp'
= such that the induced map =∗0 → =∗1 is a surjection, then the latter is split by

projectivity of =∗1. This is a desirable proprety, and we will enforce it to hold in the colimit completion as
well. The desiderata above are quantified in the following definition.
Definition 8.2. Consider the following constructions on the∞-category Sp'

= .
1. First, let us freely adjoint all colimits, i.e. form the presentable∞-category P(Sp'

= ).
2. Second, let us preserve direct sums formed in Sp'

= , which amounts to restricting to product-preserving
presheaves. These form a full subcategory denoted

PΣ(Sp'
= ) = FunΠ((Sp'

= )op , S)
and referred to as the∞-category of spherical presheaves.

3. Third, let us recover fibre sequences in Sp'
= by considering the full subcategory on spherical presheaves

+ such that if
3 → 0 → 1

is a fibre sequence in Sp'
= with =∗0 → =∗1 a surjection, then

+(1)→ +(0)→ +(3)
is a fibre sequence.
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Finally, let us stabilise this, to obtain a full subcategory

Syn= ⊂ FunΠ((Sp'
= )op , Sp)

of synthetic spectra based on =.
This definition still requires some clarification. Indeed, the second and third conditions might not

interact well, stabilisation might ruin this, and we do not know what kind of∞-category Syn= is. The most
efficient way to patch these compatibility questions is to phrase the third condition as a sheaf condition on
our spherical presheaves with respect to a Grothendieck topology on Sp'

= . Since sheaves are well behaved
as categorical objects, we will see that the spherical subcategory and the stabilisation procedure interact
well.
Definition 8.3. Consider the Grothendieck pretopology on Sp'

= in which a a map 0 → 1 is a covering if
and only if the induced map

=∗0 → =∗1

is surjective.
In fact, this Grothendieck pretopology behaves well with respect to the preadditivity of Sp'

= as well as
its symmetric monoidal structure obtained as the restriction of the smash product of spectra. This makes
the resulting site into an excellent ∞-site in the sense of [Pst18] Definition 2.24. Let us first note that this
recovers the third condition precisely as required.
Remark 8.1. Equipping Sp'

= with the Grothendieck pretopology as above, we see that the spherical sheaves
on this site are precisely those that satisfy the third condition in Definition 8.2. This stated more generally
and well documented in [Pst18] Theorem 2.8.

Proof. Let + ∈ Shv(Sp'
= ) be a spherical sheaf on the site of finite =-projective spectra. We need to show that if

3 → 0 → 1 is a fibre sequence in the underlying site such that the induced map =∗0 → =∗1 is a surjection,
then +(1) is the fibre of +(0)→ +(3). Note that per definition, this means that 0 → 1 is a covering in the
underlying site.

Now we use the fact that + is a sheaf to note that its value on 1 can be obtained as the limit of the diagram
obtained by applying + to the Čech nerve of the covering 0 → 1. In fact, let us choose a covering of every
term in the fibre sequence. This results in a diagram of the form

3 0 ×1 0 0

3 0 1.

Note that the rightmost arrow is a cover by assumption, while the centre arrows are obtained as refinements
and trivial covers, hence are also covers by the axioms of a Grothendieck topology. Now note that + was
assumed to be spherical, i.e. preserve products. We can therefore consider the usual Čech resolutions
associated to every cover in this diagram to obtain a cosimplicial diagram of short sequences

+(0×1•) +((0 ×1 0)×0•) +(3×3•)

+(0 ×1 0) +((0 ×1 0) ×0 (0 ×1 0)) +(3 ×3 3)

+(0) +(0 ×1 0) +(3)

+(1) +(0) +(3).
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In this diagram the horizontal arrows are induced by the original fibre sequence, while the cosimplicial
structure maps in the vertical directions are induced by projections. Now we use that fact that + was a
sheaf to see that all three vertical augmented cosimplicial diagrams are limit diagrams by descent. Further,
note that in cosimplicial degree • ≥ 0 (with the cosimplicial degree • = −1 being the augmentation), all
horizontal sequences are fibre sequences. Indeed, we see that this consists of + applied to the fibre sequences

3×3•+1 → (0 ×1 0)×0•+1 → 0×1•+1.

Now the latter admits a section, precisely given by the product of (relative) diagonal morphisms
Δ•+1
0→1 : 0×1•+1 → (0 ×1 0)×0•+1.

This means that the original fibre sequence is split, and one can express the middle term as a direct sum of
the two outside terms. Now it is clear that a spherical presheaf sends a split fibre sequence to a (split) fibre
sequence precisely since it preserves this product. We conclude that in all nonzero cosimplicial degrees,
the horizontal sequences are fibre sequences. By the sheaf property of +, we further know that the final
sequence on augmentations, in cosimplicial degree −1, is the limit of the sequences in cosimplicial degree
≥ 0. To finish the proof, we then simply commute the limit coming from the fibre sequences with the
cosimplicial limit in the vertical direction, to obtain that the bottom sequence

+(1)→ +(0)→ +(3)
is a limit of limit diagrams, ergo a limit diagram itself.

Conversely, let + be a spherical presheaf with the special property that it sends a fibre sequence of a
covering map to a fibre sequence of spaces. To show that it is a sheaf, we use a similar proof strategy as
before, where we let 0 → 1 be an arbitrary covering with fibre 3, and consider the map of fibre sequences

3 0 1

0 1 1.

In this diagram, all vertical maps are covering maps simply by the axioms of a Grothendieck topology. Once
again, we take Čech nerves of all these coverings and apply + to obtain a sequence of cosimplicial diagrams

+(1×1•) +(0×1•) +(3×0•)

+(1 ×1 1) +(0 ×1 0) +(3 ×0 3)

+(1) +(0) +(3)

+(1) +(1) +(0).
Now note that at every cosimplicial level • ≥ 0, the horizontal sequences are fibre sequences. Indeed, before
applying +, we see that

1×1•+1 → 0×1•+1 → 3×•+1

is a fibre sequences. By assumption for • = 0, and due to the fact that fibre sequences are invariant under
pullbacks for higher cosimplicial degrees. If we now take the limit of these cosimplicial diagrams, it is clear
that this will preserve the fibre sequences as well, whence we obtain another diagram of fibre sequences.
Note that the bottom row is trivially a fibre sequence since a spherical presheaf must send 0 to 0, and the
map on +(1) is the identity. We obtain the following diagram of fibre sequences:

limΔ +(1×1•) limΔ +(0×1•) limΔ +(3×•)

+(1) +(1) +(0).
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It is immediately obvious that the leftmost map is an equivalence, since the original cosimplicial diagram
was constant at value +(1), and in fact it is not hard to show that the rightmost vertical map is an equivalence
as well, since this is a particularly simple cosimplicial object. At this point, we would then like to apply the
spectral five lemma discussed in the proof of Proposition 6.4. However, we are only working in the context
of spaces, so that one can not necessarily obtain a long exact sequence of abelian groups by applying #∗.
However, since Sp'

= is additive–meaning that every object admits the structure of a group-like E∞-monoid
with respect to the direct sum–and spherical presheaves preserve these direct sums, we may view + as
landing in group-like E∞-spaces, which are none other than connective spectra. Therefore, one can view
this fibre sequence as lying in Sp≥0, whence one can apply the five lemma, and it suffices to show that the
right vertical map is an equivalence.

The identification of limΔ +(3×•)follows from general consideration of cosimplicial objects associated
to iterated products. Indeed, sphericity of + guarantees that this cosimplicial diagram is of the form
+(3)⊕•. Now note that any cosimplicial spectrum (where we once again view these presheaves as landing
in connective spectra) admits a spectral sequence called the Bousfield–Kan spectral sequence that converges
to the homotopy groups of its limit. In general, the Bousfield–Kan spectral sequence induced by applying
a sheaf to the Čch nerve of a covering recovers the descent spectral sequence, but in the case of the cover
3 → 0 it becomes rather trivial. Indeed, we claim that the limit of the cosimplicial object +(3)⊕• is clearly
seen to be 0 by a closed look at the Bousfield–Kan spectral sequence. For the sake of brevity of this proof,
we outsource the discussion of this result to Lemma 8.1 below. !

Remark 8.2. Let #• be a cosimplicial spectrum, then there is a spectral sequence called the Bousfield–Kan
spectral sequence with of the form

=" ,/2 = #"(#/#•) =⇒ #/−" lim
Δ
#•.

In this notation, the "-th cohomotopy group #" of the cosimplicial abelian group #/#• refers to the "-th
cohomology group of the cochain complex obtained from #/#• by the Dold–Kan equivalence for abelian
groups. The existence and construction of the Bousfield–Kan spectral sequence is an entirely classical result
from homological algebra, and we refer to [Gui07] for a description.
Lemma 8.1. If the cosimplicial spectrum #• above is of the form

#• = 7⊕•

for some fixed spectrum 7, with cofaces and codegeneracies given by the obvious projections and inclusions, then the
cochain complex obtained by applying Dold–Kan to #/#• is acyclic.

Proof. Instead of analysing the entire cochain complex, we will consider a quasi-isomorphic cochain complex
obtained as the normalisation of the former. This construction and the fact that it is quasi-isomorphic to the
usual cochain complex obtained from the Dold–Kan equivalence is outlined in [Gui07]. This tells us that
we can consider the cochain B ∗#/#• complex whose !-th degree is given by

B!#/#• =
!−1⋂
.=0

ker(#/#!
A.−→ #/#!−1).

Now using our assumption on #•, we can rewrite this codegeneracy as simply a projection killing the .-th
copy of #/7

A . : (#/7)⊕! → (#/7)⊕!−1 ,

whose kernel is then precisely the .-th copy of #/7. Taking the intersection over all values of ., we see
that each projection kills a different factor, so that the intersection is zero. We conclude that the normalised
cochain complex obtained from the cosimplicial object#/#• is actually zero, whence its cohomology groups,
i.e. the cohomotopy groups oft the cosimplicial abelian groups #/#• are trivial. !
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It is then clear from this result that the=2-page of such a case of the Bousfield–Kan spectral sequence–ergo
also the homotopy groups to which it converges–are trivial.

We conclude from this proof that the sheaf condition is well understood, and recovers precisely what
we need. The fact that sheafification interacts well with spherical (pre)sheaves will not be shown here, but
we do refer to [Pst18] Section 2 for a complete discussion on why the sheafification functor sends spherical
presheaves to spherical sheaves, making the latter into a left exact accessible localisation of the already stable
presentable∞-category PΣ(Sp'

= ), as well as a discussion of why one can do the same for hypersheaves and
hypersheafification.

Now the final step is just to sheafify, so that one recovers the original definition

Syn= = ShvSp
Σ (Sp'

= ) = Sp(ShvΣ(Sp'
= )).

The final identification is standard in the theory of spectrum-valued (spherical) sheaves, simply by noting
that (spherical) sheaves are closed under limits as a full subcategory of (spherical) presheaves, so that the
stabilisation procedure respects this, and one can view a stabilised (spherical) sheaf as a (spherical) sheaf of
spectra.

This final approach allows us to define a number of functors in and out of synthetic spectra that will
play an important role in the deformation picture. Several of these involve some sort of Yoneda embedding
construction, so it will be useful to know that the Grothendieck site Sp'

= is subcanonical, i.e. such that
representable presheaves are sheaves.
Lemma 8.2. The site Sp'

= is subcanonical.

Proof. Fixing some element > ∈ Sp'
= , we want to show that

map(−, =) : Sp'
= → P(Sp'

= )

defines a (spherical) sheaf. Now it is clear that the resulting presheaf is spherical, whence one can use the
characterisation of spherical sheaves established above. For this, let

3 → 0 → 1

be a fibre sequence of finite =-projective spectra, with 0 → 1 an =∗-surjection. We want to show that the
induced sequence

map(1, >)→ map(0 , >)→ map(3 , >)
is a fibre sequence of spaces. This is immediate simply by noting that Sp'

= is a full subcategory of the stable
∞-category Sp and closed under fibres and cofibres. It then suffices to apply the contravariant functor
map(−, >) to obtain a fibre sequence. Further, note that this holds for > any spectrum. !

Definition 8.4. Using the characterisation

Syn= % ShvSp(Sp'
= ),

we can define the following functors:
• Consider the Yoneda embedding

よ : Sp→ P(Sp),
whose image restricts to spherical presheaves PΣ(Sp), by the remark in the proof of Lemma 8.2. By
the same proof, one sees that further restricting to spherical presheaves on finite =-projective spectra
actually lands in the full subcategory of spherical sheaves. We conclude that there exists a functor

よ : Sp→ PΣ(Sp)→ ShvΣ(Sp'
= ).

Note that this is a right adjoint to the natural functor

ShvΣ(Sp'
= )→ P(Sp'

= )→ Sp
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induced by the inclusion and the natural cocontinuous functor obtained as the colimit extension of the
inclusion of finite =-projective spectra into all spectra. Finally, one can stabilise, to obtain a composite

3 : Sp よ−→ ShvΣ(Sp'
= )

Σ∞+−−→ Sp(ShvΣ(Sp'
= )) % Syn= .

This functor is called the synthetic analogue. A lot can be said about this functor and its failure to
preserve all colimits, or be strict symmetric monoidal. In fact, this will control the structure of a
deformation on synthetic spectra.

• Similarly, one can define the spectral Yoneda embedding in terms of the spectral enrichment of a stable
∞-category. Mapping spectra will be denoted Map, and they allow us to define a functor

0 : Sp→ ShvSp
Σ (Sp'

= )

using the formula
0(3)(>) := Map(> ,3).

Note that that this defines a spherical sheaf with values in spectra since the spectral enrichment once
again sends colimits in the first variable to limits in the second, whence it is a spherical sheaf. To relate
this to the synthetic analogue, note that

Ω∞Map(> ,3) % map(> ,3).

Indeed, since the site of finite =-projective spectra is additive, the Yoneda embedding takes values in
sheaves of grouplike E∞-monoids, and these can be identified using the suspension spectrum functor
with the connective parts of mapping spectra, i.e.

33(>) = 0(3)(>)≥0.

Some properties of the synthetic analogue are rather immediate from the definition.
Lemma 8.3. The synthetic analogue is lax symmetric monoidal and commutes with filtered colimits.

Proof. Note that 3 sends a spectrum 3 to the levelwise suspension spectrum of the representable sheaf
associated to 3. Since this representable sheaf is to be seen as a sheaf on Sp'

= , and every object in the latter
is finite ergo compact as an object of Sp, it is clear that mapping out of these preserves filtered colimits, and
postcomposition with the left adjointΣ∞+ will preserve these as well. To see that 3 is lax symmetric monoidal,
it suffices to note that the Yoneda embedding was right adjoint to the embedding of Sp'

= into Sp. Now this
embedding is symmetric monoidal since both sides are equipped with the smash product, whence its colimit
extension is symmetric monoidal as well by the Day convolution structure on presheaves. We infer that its
left adjoint must be lax symmetric monoidal. Note that the formation of suspension spectra is symmetric
monoidal, so that the composite 3 of the suspension spectrum functor and the Yoneda embedding is lax
symmetric monoidal. !

Lemma 8.4. The presentable stable∞-category Syn= is generated under colimits by objects of the form 3>, where >
ranges over all finite =-projective spectra.

Proof. Note that due to Yoneda’s lemma, the synthetic analogue has a universal property. If > is a finite
=-projective spectrum and 3 any synthetic spectrum, we obtain

map(3> ,3) % map(Σ∞+よ(>),3),
% map(よ(>),Ω∞3),
% Ω∞3(>).

Therefore, it is clear that the family {map(Σ(3> ,−)} is conservative, where ( ranges over the integers and >
ranges over all finite =-projective spectra. We conclude that the synthetic spectra 3> generate Syn=. !
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Lemma 8.5. The synthetic analogue 3 is strict symmetric monoidal when one of the inputs is =, in the sense that for
any spectrum 3 the comparison map

3= ⊗ 33 → 3(= ∧ 3)
is an equivalence.

Proof. Recall from the proof of Lemma 8.4 that it suffices to show that in this case the comparison map
on representable presheaves is an equivalence, since the suspension spectrum functor is strict symmetric
monoidal. More precisely, we have a comparison map of spherical sheaves of spaces

よ(=) ⊗よ(3)→よ(= ∧ 3),

which on a finite =-projective spectrum > evaluates to a map of spaces

(よ(=) ⊗よ(3))(>)→よ(= ∧ 3)(>) % map(> , = ∧ 3).

Now the left hand side can also be identified explicitly. Indeed, we are considering a Day convolution
product of presheaves, but the latter has the universal property that it makes the Yoneda embedding of
Sp'

= into its∞-category of presheaves symmetric monoidal. More explicitly, this means that for some finite
=-projective D, the functor

よ(D) ⊗ − : P(Sp'
= )→ P(Sp'

= )
is the left Kan extension of

D ∧ − : Sp'
= → Sp'

=
よ−→ P(Sp'

= )
along the Yoneda embeddingよ, giving rise to a commutative diagram

Sp'
= Sp'

= P(Sp'
= ),

P(Sp'
= )
よ

D∧− よ

よ(D)⊗−

Further, let us use that = is Adams type, hence can be written as a filtered colimit

= % colim
(

=( , =( ∈ Sp'
= .

We come to the description

(よ(=) ⊗よ(3))(>) % (よ(colim
(

=() ⊗よ(3))(>),
% colim

(
(よ(=() ⊗よ(3))(>),

% colim
(
よ(=( ∧ 3)(>),

% colim
(

map(> , =( ∧ 3)
% map(> , = ∧ 3).

In this identification, we simultaneously used that the Yoneda embedding commutes with filtered colimits
by compactness of finite =-projective spectra, as well as the observation that the Day convolution commutes
with colimits in each variable. The rest of the proof is then a simple matter of manipulating the expressions
using the commutative diagram established above. !
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8.2 Bigraded spheres and !

Now we can begin to describe synthetic spectra as a generalised homotopy theory, defining a notion of
spheres and homotopy groups. In fact, the homotopy groups of synthetic spectra are naturally bigraded,
where one grading reflects that fact that the sheaves that they are defined as take values in spectra, and the
second grading encapsulates the internal homotopy theory of the∞-category of finite =-projective spectra.
In fact, these bigraded synthetic homotopy groups interpolate between the homotopy groups of spectra and
their =∗-homology as will be shown later on.
Definition 8.5. For any integers ? ,E referred to as the topological degree and the weight respectively, let
us define a synthetic spectrum by

S? ,E := Σ?−E3SE ,

where we have taken the pointwise suspension of the sheaf obtained as the synthetic analogue of the shifted
sphere spectrum SE . The integer ? − E is called the Chow degree.

Having defined these bigraded spheres, one can then define bigraded homotopy groups of a synthetic
spectrum 3 by

#? ,E3 := #0map(S? ,E ,3).

Remark 8.3. Note from the definition that

ΣS? ,E % Σ?−E+13SE % Σ(?+1)−E3SE = S?+1,E .

This means on mapping spaces we have

map(S?+1,E) % map(ΣS? ,E ,3) % map(S? ,E ,Ω3) % Ωmap(S? ,E ,3),

whence letting ? vary, these spaces define a spectrum object in spaces. In particular, this means that our
formula for bigraded synthetic homotopy groups can be expressed in terms of mapping spectra in the stable
∞-category Syn=, where we now let the topological weight ? be encapsulated in the spectrum, and define

#? ,E3 = #?Map(S0,E ,3)

for any integers ? ,E. We will see later that this has a computational upshot: all bigraded synthetic homotopy
groups can be recovered simply by mapping out of the spheres S0,E in an appropriately enriched way. In
fact, this is an essential result for the deformation picture of synthetic spectra.
Remark 8.4. More generally, we have a product formula for bigraded spheres of the form

S? ,E ⊗ S?
′ ,E′ % S?+?

′ ,E+E′ .

This is an immediate consequence of the definition and the key observation that 3 is strict symmetric
monoidal when restricted to the full subcategory of finite =-projective spectra (containing all spheres).
Indeed, in that case 3 is simply obtained as the composite of the symmetric monoidal functor Σ∞+ on sheaves
and the Yoneda embedding of Sp'

= –sans restriction–which is strict symmetric monoidal by construction of
the Day convolution (cf. the proof of Lemma 8.5). Explicitly, this tells us that

3SE ⊗ 3SE
′ % 3(SE ∧ SE

′) % 3SE+E
′

whence the observation above follows immediately.
Recall that 3 did not preserve cofibre sequences, and we claimed that this was key to the deformation

structure of synthetic spectra. In fact, synthetic spectra admit an internal description of the deformation
parameter ! in terms of precisely this deficit. If we let 3 be a synthetic spectrum and > a finite =-projective
spectrum, then one can consider the cofibre Σ> of the map > → 0. Note that the functor 3 sends this
diagram to

3(>)→ 3(0) % 0,
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with the last equivalence following from sphericity of 3. The fibre of this induced map is Ω3(>), with the
desuspension being constructed levelwise. Now this is not necessarily equivalent to 3(Σ>), but there is an
entirely formal comparison map (natural in >)

! : 3(Σ>)→ Ω3(>)

induced by the fact that the natural map 3(Σ>) → 3(>) is zero, hence factors through the fibre. We are
primarily interested in the special case where 3 = S0,0, so that this comparison map takes the form

! : 3S(Σ>)→ Ω3S(>).

Now the right hand side is given by

3S(Σ>) % Σ∞+ map(Σ> ,S) % Σ∞+ map(> ,ΩS) % Σ∞+ map(> ,S−1) % 3S−1(>) % ΩS−1,−1(>)

so that the comparison map can be seen as a natural transformation i.e. morphism of synthetic spectra

! : S−1,−1 % 3S−1 → ΩS0,0 % S−1,0.

Of course, it is customary to identify ! with its suspensions, and we will usually work with ! viewed as a
map

! : S0,−1 → S0,0 ,

in particular defining a class in degree (0,−1) in the synthetic stable stem. It is then a result of [Pst18] that
this comparison map for all synthetic spectra is obtained from the one above by tensoring with the identity
on a given synthetic spectrum. We refer to Proposition 4.18 in op. cit. for a proof9.

Just as in any deformation, the parameter ! plays a fundamental role. We denote its cofibre by #!, sitting
in the cofibre sequence

S0,−1 → S0,0 → #!.

In fact, this element controls the t-structure on synthetic spectra. It is not only a synthetic spectrum, but
actually an E∞-algebra in synthetic spectra. This is nontrivial a priori, but will of course become trivial
once we identify it with the image of the E∞-algebra *! in filtered spectra under a symmetric monoidal left
adjoint exhibiting Syn= as a deformation. Without this information, one can show that #! is an E∞-algebra
manually, by showing that it is the image of the E∞-algebra S0,0 under the lax monoidal functor !≤0 arising
in the t-structure on synthetic spectra. The following section is devoted to showing this result.

8.2.1 The t-structure

Note that Syn= could be expressed as a stable∞-category of spherical sheaves of spectra. It therefore obtains
a natural t-structure in terms of sheaves of homotopy groups. Given some synthetic spectrum3, one obtains
for every % a (spherical) presheaf of abelian groups

#%3pre : > ↦→ #%3(>).

This is not necessarily a sheaf, so it must be sheafified to obtain the sheaf homotopy groups #%3. It is in
terms of these sheaf homotopy groups that one makes the usual identification of the connective part with
the full subcategory on 3 such that #%3 vanishes for % < 0. Note that the sheafification can change this
presheaf of abelian groups quite a lot, so that the natural t-structure on synthetic spectra is not a levelwise
t-structure on some diagram category in spectra.

Since this t-structure is defined in a rather formal way, it is easy to see that it is (relatively) well behaved:
it is compatible with filtered colimits and the symmetric monoidal structure, and is right complete, as in
[Pst18] Proposition 2.16. In this section, we aim to highlight its relation to the thread operator !.

9In fact, this observation means that synthetic spectra on which ! acts invertibly are precisely those synthetic spectra that send
suspensions of finite =-projective spectra to loops. This description of the generic fibre is key to the description of deformations of
unstable homotopy theories using algebraic theories as described in [Bal21].
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Remark 8.5. In many contexts, it can be more insightful to consider an additive presentable ∞-category,
since its stabilisation admits a natural t-structure in which the original additive ∞-category forms the
subcategory of connective objects. For example, the ∞-category of spectra is useless without its natural
t-structure, so that it makes more sense to consider simply the additive presentable∞-category of group-like
E∞ -monoids in spaces, considered as the connective part in its stabilisation–namely Sp. Implicit in this
consideration is that there is a factorisation

PrL → PrL
∗ → PrL

add → PrL
St

of the stabilisation functor through universal pointed and additive presentable ∞ -categories. This was
hinted at in Section 4.3, and is explained in detail in [GGN15].

However, this perspective is not what gives rise to the t-structure on synthetic spectra. Indeed, the
∞-category of spherical sheaves of spaces on Sp'

= is not assumed to be hypercomplete, so that homotopy
presheaves need to be sheafified, and many operations are not done levelwise. In [PV19] the authors instead
consider the subcategory of hypercomplete spherical sheaves, and its sheafification: the ∞-category of
hypercompletete spherical sheaves of spectra. As is a common theme, hypercomplete sheaves give rise to a
coherent∞-topos in which the t-structure is well behaved, and this is desirable if one wants to set up e.g. a
form of obstruction theory inside synthetic spectra. In our case, we work with a messier t-structure in which
the connective part does not admit a direct identification, and such that it admits ∞-connective objects. In
fact, this will be essential to the recollement picture.

The first result is that the !-cofibre sequence actually resembles a decomposition into coconnective and
1-connective parts.
Proposition 8.1. Let 3 be a spectrum, then there is a cofibre sequence

Σ0,−133 → 33 → #! ⊗ 33 .

This is such that one can identify

Σ0,−133 % !≥133 , 33 % !≥033 , #! ⊗ 33 % !≤033 .

Proof. First, note that 33 is 0-connective per construction. We conclude that the middle equivalence holds.
As for the left equivalence, it is clear that Σ0,−133 is given by

Σ0,−133 = Σ3S−1 ⊗ 33 = Σ3(Σ−13)

since it is the source of the colimit-to-limit comparison map !. We then note that this is given by the
suspension of a synthetic analogue, hence is (0 + 1 = 1)-connective. Finally, it suffices to show that the
cofibre #! ⊗ 33 is 0-coconnective. Here let us be careful, since the colimit-to-limit comparison map was
actually defined to be the shift of !, so that showing that #!⊗ 33 is 0-coconnective amounts to showing that

cof((3Ω3)(>)→ Ω33(>))

is −1-coconnective. Indeed, since sheafification is exact and %-coconnective objects in Syn= are sheaves of
%-coconnective spectra, so it suffices to show this levelwise. We can rewrite this cofibre as

cof(Σ∞Ωmap(> ,3)→ ΩΣ∞map(> ,3)).

Now Ω commutes with Σ for spectra since they are mutually inverse, so that this is almost true for the
connective spectra above, modulo the information in degree −1 introduced by the Ω in the target. We
conclude that the cofibre is (−1)-coconnective, and in fact concentrated in degree −1. !

Remark 8.6. If 3 = S, we see that #! % !≤0S0,0, so that it obtains a natural structure of an E∞-algebra in
Syn=. Indeed, we stated earlier that the t-structure was compatible with the symmetric monoidal structure,
so that the Postnikov truncation functors are lax symmetric monoidal.
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Corollary 8.1. From the description above, we see that

!≥133 % fib(33 → #! ⊗ 33).

Now !≥133 is (the suspension of) the synthetic analogue of Σ−13, so that this process can be iterated, leading to

!≥233 % fib(Σ0,−13 → #! ⊗ Σ0,−133),

etc.

In fact, this can be done for all % ≥ 0 to obtain a tower

· · · !≥%+133 !≥%33 · · · !≥233 !≥133 !≥033

#! ⊗ !≥%33 #! ⊗ !≥133 #! ⊗ 33

where the vertical arrows indicate cofibre sequences, i.e. the next level in the tower is obtained as the fibre
of the unit map leaving from the previous one into its tensor product with #!. We will see in Section 8.3
that this is precisely the #!-Adams tower of 33. We can therefore say that the Postnikov tower of a synthetic
analogue is precisely its #!-Adams tower, thus reifying the intuition that ! controls the ?-structure in Syn=.

While the t-structure on Syn= is relatively well understood, as is clear from the discussion above, its
relation to bigraded homotopy groups arising from the spheres S? ,E is nontrivial and involves information
coming from the Adams type homology theory = underlying the construction. For example, the bigraded
homotopy groups#? ,E33 can a priori have information in negative Chow degrees. In positive Chow degrees
however, we simply recover the homotopy groups of 3.
Proposition 8.2 ([Pst18] Corollary 4.12). Let 3 be a spectrum, then in postive Chow degree, i.e. for ? − E ≥ 0,
we have

#? ,E33 ! #?3 .

Proof. This follows immediately from the definition and the universal property of the synthetic analogue.
Indeed, one computes

#? ,E33 % #0map(S? ,E , 33),
% #0map(Σ?−E3SE , 33),
% #0map(3SE ,Ω?−E33),
% #?−Emap(3SE , 33),
% #?−Emap(Σ∞よ(SE), 33),
% #?−Emap(よ(SE),Ω∞33),
% #?−EΩ∞33(SE),
% #?−Emap(SE ,3),
% #?−EΩEmap(S,3),
% #?3 .

!

While the negative Chow degree part might not be known explicitly, if the underlying spectrum has
the structure of a homotopy =-module, more can be said: namely that the negative Chow degree groups
vanish. The proof of this argument requires a careful analysis of the long exact sequences arising from these
bigraded homotopy groups and their relation to the !-inversion functor; but we elide the proof and simply
propose the statement below.
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Proposition 8.3 ([Pst18], 4.60). Let F be a homotopy =-module in Sp. For our considerations, one can usually
think of F as a smash product F % = ∧ 3. Then the bigraded homotopy groups

#? ,E3F

vanish in negative Chow degree, i.e. for ? − E < 0.

8.3 Complete objects and Adams towers
Just as regular homotopy theory allows us to understand =-nilpotent complete spectra entirely in terms of
the =-based Adams spectral sequence coming from their =-based Adams tower, a similar operation can be
done in synthetic spectra. Replacing a spectrum 3 by its synthetic analogue, and replacing = by 3=, we
can develop a theory of the 3=-based Adams towers of 33, which is related to the =-based Adams tower
of 3 by a shift encoded precisely in the operator !. The main application of this 3=-based Adams spectral
sequences is in the work of Burklund–Hahn–Senger on manifold theory in [BHS19], and in fact this section
is mainly an elaboration on appendix A in op. cit. in which these Adams towers are described explicitly.

Let us begin by recalling the construction of the classical Adams spectral sequence for spectra, based on
=.
Definition 8.6. Let 3 be some spectrum, and consider the map 3 → 3 ∧ = induced by tensoring the
identity of 3 with the unit map S→ = of the ring spectrum =. Now define a spectrum 31 as the fibre along
this map

31 → 3 → 3 ∧ =.
In fact, since Sp is presentable and stable, the smash product commutes with cofibres, so one might as well
construct 31 by smashing 3 with the fibre =̄ of the unit map.

Now note that one can iterate this process, defining 3%+1 to be the fibre of the unit map

3%+1 → 3% → 3% ∧ =.

The canonical maps 3%+1 → 3% assemble to form a tower object in spectra (a functor from Z
op
≥0) of the form

· · ·→ 32 → 31 → 30 % 3 ,

the associated graded in degree % is 3% ∧ = per construction, and using the stability of spectra. This tower
is called the =-based Adams tower of 3 and its associated spectral sequence is the =-based Adams spectral
sequence of 3.
Remark 8.7. Since Sp is presentably symmetric monoidal and stable, we see that all involved operations of
smash products and (co)fibres actually commute with smashing with another spectrum 0. Therefore, we
see that the =-based Adams tower for 3 ∧ 0 is nothing else than the =-based Adams tower for 3 smashed
with 0 in every degree. In particular, it often suffices to describe the =-based Adams tower of the monoidal
unit S.
Remark 8.8. The most important part of the Adams tower is that its associated spectral sequence converges
to the homotopy groups of the =-nilpotent completion 3∧= of 3, i.e. the limit of the cosimplicial object
3 ∧ =∧• obtained by smashing 3 with the cobar resolution of =.

Note that the definition of the Adams tower and its associated spectral sequence really works in any
stable presentably symmetric monoidal ∞-category, where = can now be replaced by any commutative
algebra object10 Now we would like to mimic this construction in synthetic spectra and compare it to the
Adams tower of 3. The 3=-based Adams tower of 33 is defined similarly:

• Set (33)0 = 33,
10In fact, we only require = to be an E1-algebra, but for our considerations we are primarily interested in commutative ring objects,

and actually only require them to be homotopy commutative.
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• For a natural number %, define (33)%+1 to be the fibre of the unit map

(33)%+1 → (33)% → (33)% ⊗ 3=.

• Iterate this to obtain a tower of synthetic spectra

· · ·→ (33)2 → (33)1 → (33)0 % 33 ,

whose associated graded at degree % is (33)% ⊗ 3=.
In particular, in degree zero we see that we are considering the unit map

33 → 33 ⊗ 3=.

Now the target can actually be identified with 3(3 ∧ =) by Lemma 8.5. Therefore, we are actually reduced
to comparing

(33)1 = fib(33 → 3(3 ∧ =)), 331 = 3fib(3 → 3 ∧ =).

However, we know precisely what quantifies the difference between these two, namely the ! operator,
inducing a comparison map

331
!−→ (33)1.

Now by our previously cited observation that ! is merely induced from the map

! : S0,0 → S0,1 ,

we conclude that there is an equivalence (33)1 % Σ0,1331.
This tells us that the 3=-based Adams tower of 33 can be recovered from the =-based Adams tower of

3 by shifting in the deformation direction at every level. Indeed, replacing 33 by (33)% in the reasoning
above, we can iterate to obtain a complete description

· · ·→ Σ0,2332 → Σ0,1331 → 330 % 33

of the 3=-based Adams tower of 33.
Remark 8.9. We will discuss in the next section that inverting ! is a left inverse to the synthetic analogue
construction. We now see that even the 3=-based Adams tower of 33 only differs from (the synthetic
analogue of) that of 33 by repeated application of !. Therefore, we see that the !-inversion of the 3=-based
Adams tower of 33 in synthetic spectra recovers the =-based Adams tower of 3 in ordinary spectra–or
more properly, its image under the spectral Yoneda embedding exhibiting the equivalence of the latter
with !-invertible synthetic spectra. This important remark highlights the way in which synthetic homotopy
theory recovers all information of the =-based Adams spectral sequence in ordinary spectra as well.

Having established the machinery of Adams filtrations, we will now describe how they help us under-
stand 3=-complete objects in synthetic spectra in terms of =-complete spectra. We first recall what it means
for an object to be complete with respect to some Adams type homology theory (or more generally, any
dualisable homotopy associative algebra).
Definition 8.7. A spectrum 3 is =-complete, or more correctly =-nilpotent complete, if the canonical map

3 → 3∧= := lim
Δ
3 ∧ =∧•

to its =-completion induced by the augmentation obtained from the unit map is an equivalence. Note that
the cosimplicial object of which we consider the limit is simply the cobar resolution of = smashed with 3.
Further, note that this extends easily to other homotopy theories such as synthetic spectra, whence there
is a notion of 3=-complete synthetic spectra, which we will see is the same as the notion of completeness
established in the section on Dwyer–Greenlees theory. Indeed, we saw that the completion functor could
be described precisely in terms of the cosimplicial object above.
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Fortunately, now that we have developed Adams filtrations, there is a different way of verifying this.
This relies on the∞-categorical Dold–Kan correspondence

Fun(Δ, C) ∼−→ Fun(Zop
≥0 , C),

#• ↦→ lim
Δ≤★

#•

between cosimplicial objects and towers in a stable ∞-category C. The functor depicted above sends a
cosimplicial object to the tower obtained by taking its limits over the full subcategories of Δ on objects of
cardinality no greater than some upper bound. Letting this upper bound vary gives us the tower structure
on the latter. This is a well established result, appearing in [Lur17] Theorem 1.2.4.1.

To follow the standard convention, we denote the limit of a cosimplicial object over Δ≤★ by its partial
totalisation Tot★, with the full limit being referred to as its totalisation Tot, dually to the geometric realisation.
We can therefore adopt the notation

#• ↦→ Tot★#•

for the Dold–Kan correspondence.
Lemma 8.6. If we view the cobar resolution =∧• of = as a cosimplicial object in Sp, the Dold–Kan equivalence sends
this to the tower cof(S★+1 → S), where S★+1 is the (★+ 1)’st term in the =-based Adams filtration of S.

Proof. Using the formula above, we see that the proof of this statement essentially reduces to a computation
of the partial totalisations of the cosimplicial object =∧•. In fact, for the purpose of computing limits indexed
byΔ≤% , we see that it suffices to consider the subcategoryP([%]) on nonempty subsets of [%]with the induced
ordering, and inclusions between them making this into a poset. The observation that this inclusion is right
cofinal is made in [Lur17] Lemma 1.2.4.17. The cobar resolution then becomes a functor11

cb(S→ =) : P([%])→ Sp,

, ⊂ [%] ↦→
∧
(∈,

= ∧
∧
.∉,

S.

We now see that given some inclusion of subset , ⊂ ,′, the induced map between values of cb(=) is the map∧
(∈,

= ∧
∧
.∉,

S %
∧
(∈,

= ∧
∧
'∈,′\,

S ∧
∧
.∉,′

S→
∧
(∈,′

= ∧
∧
.∉,′

S

that applies the unit map S→ = at every index ' ∈ ,′ \ ,. We make two observations about this.
• This extends to a functor cb+(S→ =) from P+([%]), the poset of possibly empty subsets and inclusions

between them. Of course this is none other than the left cone

P+([%]) = P([%])⊳.
In particular, we note that the value at ∅ of a functor in )+ ∈ SpP+([%]) is a cone over the restricted
diagram in ) ∈ SpP+([%]), so that by the universal property of the limit there is always a map

)+(∅)→ lim
P([%])

) .

• Further, this operation can be done for S→ = replaced by any [%]-indexed collection of morphisms,
as in [MNN17] Proposition 2.10. In particular, we can consider the same operation induced by the
constant family on the map

=̄→ 0
appearing in the fibre sequence

=̄→ S→ =.
11The admittedly clunky notation

∧
simply refers to iterated smash products and not some exterior algebra.



8 SYNTHETIC SPECTRA 70

Since there is an obvious map
[=̄→ 0]→ [S→ =]

in SpΔ1 appearing in the Cartesian square defining =̄, we use the two remarks above to obtain a natural
transformation of functors

cb+(=̄→ 0)→ cb+(S→ =) ∈ SpP+([%]).

Since cofibres are computed levelwise in this functor ∞-category, we see that the cofibre of this map is a
functor which evaluates at ∅ ⊂ [%] to

cof(
∧
(∈[%]

=̄→
∧
(∈[%]

S).

By our observation above, this forms a cone over the restricted diagram, whence there is a map to the limit
of the latter. Now the restriction can be described as evaluating at every nonempty , ⊂ [%] to the cofibre

cof(
∧
(∈,

=̄ ∧
∧
.∉,

0→
∧
(′∈,

= ∧
∧
.′∉,

S) % cb(S→ =)(,),

since the source of this cofibre is trivial as soon as we include a smash factor of 0. Therefore, the restriction
of this cofibre is none other than our original cobar resolution cb(S→ =), and the observation above gives
a map

cof(
∧
(∈[%]

=̄→
∧
(∈[%]

S)→ lim
P([%])

cb(S→ =) % Tot%=∧•.

To show that this is an equivalence, we note that the unit map [S→ =] actually sits in a cofibre sequence

[=̄→ 0]→ [S→ =]→ [=→ =],

with the first map being the one considered above. If we now replace [S → =] by [=̄ → 0] in the limit
comparison map above, it is clear that this becomes an equivalence since both sides are trivial. If we instead
inserted the identity [= → =], we see that it is an equivalence by an application of [Lur17] Lemma 1.2.4.15.
We then conclude that this comparison map is also an equivalence for the extension [S→ =].

Now we use our previous comment in the construction of the Adams tower, which said that it could
equally well be obtained by successively smashing with the fibre =̄. In particular, we obtain

S★+1 % S ∧ =̄∧★+1 %
∧
(∈[★]

=̄,

whence the explicit description of Tot★=∧• in terms of the cofibre above precisely recovers what needed to
be shown. !

In fact, the construction of the Adams tower and the description of the tower obtained from the cobar
resolution of = through the Dold–Kan equivalence can be stated in great generality, similar to that of Section
4.5. Continuing within the vein of that section, we use the Adams tower to obtain another description of
completeness.
Proposition 8.4. Let C be a stable presentably symmetric monoidal ∞-category with a dualisable commutative
algebra object inside it, in this case C is Sp or Syn= and ; is = resp. 3=, and we adopt the notation of the former. Then
the following are equivalent for an object 3:

• 3 is =-complete in the sense that it lies in the right orthogonal complement of the ;-trivial objects.

• 3 is such that the augmentation
3 → Tot(3 ∧ =∧•)

is an equivalence.

• 3 is such that the limit of the =-Adams tower of 3 vanishes.
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Proof. Note that the first two items are equivalent by our previous result Lemma 4.2. We therefore only
need to show that the last two are equivalent. In one direction, assume that 3 is equivalent to the limit
of 3 ∧ =∧•. The latter cosimplicial object is equivalent to the tower 3 ∧ cof(=̄∧★+1 → S) by the Dold–Kan
equivalence in Lemma 8.6. By presentability, we see that this tower can also be described by

cof(3 ∧ =̄∧★+1 → 3).

This fits inside a cofibre diagram of towers

· · · 3 ∧ =̄%+1 3 ∧ =̄% · · · 3 ∧ =̄

· · · 3 3 · · · 3

· · · cof(3 ∧ =̄∧%+1 → 3) cof(3 ∧ =̄∧% → 3) · · · cof(3 ∧ =̄→ 3).

Now note that the top tower is precisely the =-Adams tower of 3 (up to a shift). Indeed, we saw that this
tower was constructed iteratively by smashing on fibres of the unit map S → =. By stability, we see that
cofibres commute with limits, so that this cofibre sequence of towers induces a cofibre sequence on the
limits of the form

lim(3 ∧ =∧★)→ 3 → lim(cof(3 ∧ =∧★+1 → 3)) % lim(3 ∧ =∧•),

where the last line uses the Dold–Kan equivalence. We conclude that the last map is an equivalence if and
only if the fibre is zero, and by our reasoning above this is the case if and only if the =-based Adams tower
of 3 has a vanishing limit. !

The upshot of the description above, is that we have previously established a relation between =-Adams
towers in spectra and 3=-Adams towers in synthetic spectra, twisted by !. We can therefore hope to relate
=-completeness in spectra with 3=-completeness in synthetic spectra. In fact, this is well known for synthetic
analogues, forming the content of [BHS19] Proposition A.13, which we review here.
Proposition 8.5. Let 3 be a spectrum, then the following are equivalent.

• 3 is =-complete.

• 33 is 3=-complete.

• 33 is !-complete.

Proof. The first two can be compared easily, since the previous proposition can be applied, whence it
suffices to show that the =-Adams tower of 3 has vanishing limit if and only if the 3=-Adams tower of 33
has vanishing limit. Recall that the 3=-Adams tower of 33 is of the form

(33)% = Σ0,%33% .

This means that we would like to compare the limits

lim
%

Σ0,%33% , lim
%
3% .

For this, let us rephrase these in terms of a right adjoint functor, namely the spectral Yoneda embedding 0.
Since 0 preserves limits, we have an equivalence

0(lim
%
3%) % lim

%
0(3%),

so that we can embed the =-based Adams tower of 3 into the synthetic realm. As for the 3=-based Adams
tower of 33, we use the equivalence

Σ0,%33% % !≥−%0(3%).
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Indeed, we saw that there was a cofibre sequence

Σ0,−133 → 33 → #! ⊗ 33

decomposing a synthetic analogue into its 1-connective, resp. 0-coconnective parts. Using Lemma 8.7 to
identify 33 with the connective cover of 0(3), we can desuspend in the deformation direction % times to
identify

Σ0,%33% % !≥−%0(3%).
In particular, the inclusion of (−%)-connective covers induces a cofibre sequence

!≥−%0(3%)→ 0(3%)→ !≤−%(3%),
which induces a map of towers as % varies. In particular, by stability this will commute with the limit, so
that we obtain a cofibre sequence on the limits of each tower of the form

lim
%

!≥−%0(3%) % lim
%

Σ0,%33% → lim
%
0(3%) = 0(lim

%
3%)→ 0,

where the last terms vanishes since the t-structure on synthetic spectra is right complete, i.e. there are no
∞-coconnective objects. In particular, this means that the limits above are equivalent. Using the fact that 0
is a fully faithful embedding, we see that 33 is 3=-complete if and only if 3 is =-complete, since one limit
vanishes if and only if the other does.

Finally, let us check that 3=-completeness is equivalent to !-completeness. Once again, recall that
3=-completeness is equivalent to the limit of the 3=-Adams tower of 33 vanishing. Similarly, since !-
completeness is equivalent to being !-torsion by our discussion of Dwyer–Greenlees theory, we can test !-
completeness on the vanishing of the limit of the tower obtained by repeated multiplication by !. Therefore,
we can fit 33 into a double tower

...
...

...

· · · 332 Σ0,−1331 Σ0,−233

· · · Σ0,1332 331 Σ0,−133

· · · Σ0,2332 Σ0,1331 33 .

! ! !

! ! !

! ! !

In this diagram, the bottom horizontal row is the 3=-Adams resolution of 33, and higher horizontal rows
are obtained as its iterated Σ0,−1-suspensions, with arrows between horizontal layers given by the action of
!. We see that the limit of the rightmost vertical tower vanishes if and only if 33 is !-complete, while the
limit of the bottom horizontal tower vanishes if and only if 33 is 3=-complete. Now the main result is to
show that both of these limits are precisely equivalent to the limit of this entire diagram. Concretely, we
claim that there is an equivalence

lim
%

Σ0,%33% % lim
%

lim
!

Σ0,%−!33% % lim
!

lim
%

Σ0,%−!33% % lim
!

Σ0,−!33 .

The middle equivalence is benign, as it consists merely of a limit exchange. Let us tackle the second
equivalence.

This actually underlies a slightly stronger result, namely that after taking the limit over !, we obtain an
essentially constant tower, whose limit (ergo also its value at every level) is then lim! Σ0,−!33. Indeed, note
that per construction we have a precise description of the cofibre at every level of the Adams tower: it is
given by Σ0,%−!33% ⊗ 3= at height !. Taking the limit over !, we see that the successive cofibres are given
by

lim
!

Σ0,%−!(33% ⊗ 3=) % lim
!

Σ0,−!(Σ0,%33% ⊗ 3=).
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If we can show that these vanish, we will have shown that the Adams tower at height ! →∞ is essentially
constant. In particular, given the explicit description above in terms of a limit over repeated application of
! (followed by a conservative functor), this is equivalent to showing that every

Σ0,%33% ⊗ 3= = Σ−%(3S% ⊗ 33% ⊗ 3=) % Σ−%(3(Σ%3%) ⊗ 3=)

is !-complete. Since this subcategory is closed under (co)limits, we can ignore the suspension on the
outside and it suffices to show that for a general spectrum 0, the object 30 ⊗ 3= is !-complete. Recall from
Proposition 8.3 that synthetic analogues of homotopy =-modules such as 0 ∧= were nice connective objects
in the sense that their bigraded homotopy groups vanish in negative Chow degree. Recalling that ! controls
the t-structure on Syn=, it is perhaps not surprising to see that these are !-complete for the purely formal
reason sketched here.

Once again, it suffices to show that the limit of !-multiplication tower of this object vanishes, and this can
now be shown using the property of synthetic analogues of homotopy =-modules sketched above. Indeed,
recall that Syn= is generated under colimits by synthetic analogues of finite =-projectives, so that it suffices
to fix such a > and show that the mapping spectrum

Map(3> , lim
!

Σ0,−!30 ⊗ 3=)

vanishes. Now this mapping spectrum can be rewritten as

Map(3> , lim
!

Σ0,−!30 ⊗ 3=) % lim
!

Map(3> ,Σ0,−!30 ⊗ 3=),

% lim
!

Map(S0,! , 3(0 ∧ = ∧ ->)),
% 0.

To go the second line, we used the dualisability of synthetic analogues of finite =-projective spectra–a con-
sequence of the monoidality of the synthetic analogue when restricted to these spectra. We then used the
observation that the mapping spectrum appearing inside the limit computes the synthetic homotopy groups
of the synthetic analogue inside it. Now by Proposition 8.3 concerning the connectivity of bigraded homo-
topy groups of the synthetic analogue of a homotopy =-module, this resulting spectrum is !-connective.
Since there are no nontrivial ∞-connective spectra, we see that taking the limit as ! increases gives rise to
the desired vanishing.12

We conclude that 30 ⊗ 3= is !-complete for any spectrum0, so that the successive cofibres of the Adams
tower at height ! → ∞ are trivial, whence it is constant. Its limit is then equal to its 0-th term, which is
simply the limit

lim
!

Σ0,−!33 ,

and we conclude.
Now we proceed to show the first equivalence by a similar reasoning. Indeed, the successive cofibres

in the tower of repeated !-multiplication are also known: in height !, it is given simply by the cofibre of !
acting on the !-th object, i.e. in height ! and Adams degree % it is #! ⊗ Σ0,%−!33% . Once again, we will
show that these vanish, but this time in the limit in the Adams direction, i.e. for % →∞. We have therefore
reduced our problem to showing that for every spectrum0, the synthetic spectrum #!⊗ 30 is 3=-complete,
since this recovers the vanishing of the cofibres in the limit above.

As is routine by now, this will be done by showing that the limit of the 3=-Adams tower of #! ⊗ 30
vanishes. We remarked earlier that the formation of the Adams tower is monoidal in the sense that the
Adams tower for#!⊗30 can be obtained by tensoring the Adams tower of 30with#! levelwise. Concretely,
this means that the %-th part of the Adams tower of #! ⊗ 30 is given by

(#! ⊗ 30)% % #! ⊗ (30)% = #! ⊗ Σ0,%30% ,

12Compare the proof of Proposition 9.2 for a similar consideration of the connectivity of these mapping spectra computing bigraded
synthetic homotopy groups.



8 SYNTHETIC SPECTRA 74

where 0% is the %-th term in the =-based Adams tower of the spectrum 0. But now we see that the latter can
be written out as

#! ⊗ Σ0,%30% % Σ−%(#! ⊗ 3(Σ%0%)).
Now use the observation that tensoring with #! takes the 0-coconnective part, from Corollary 8.1, to see
that the resulting object is (−%)-coconnective. If we now take the limit % → ∞, computing the limit of the
3=-based Adams tower of #! ⊗ 33, we see that the limit must be a (−∞)-coconnective synthetic spectrum,
hence trivial by right completeness of the t-structure on synthetic spectra. We conclude that in the limit
% → ∞, the tower obtained by repeatedly applying ! is essentially constant, so that its limit over ! is
equivalent to its zeroeth part, which is none other than the limit of the 3=-based Adams tower of 3

lim
%

lim
!

Σ0,%−!33% % lim
%

Σ0,%33% .

Bringing it all together, we use the chain of equivalences that was shown in the previous paragraphs to
see that the limit of the 3=-based Adams tower of 3 vanishes if and only if the limit of its multiplication-by-!
tower vanishes. By the results of our analysis of Adams towers and Dwyer–Greenlees theory, we see that
these (equivalent) conditions are themselves equivalent to 33 being 3=-complete, resp. !-complete. !

8.4 Realisation and !-inversion
An important part of the theory of synthetic spectra, is that one can explicitly identify the subcategories

Syn=[!−1] % Sp, Mod(Syn=;#!) % Stable=∗= .

As is apparent from the section on deformations, and as will be elaborated on below; these computations
are essential to the theory of deformations, indeed they are the identifications of the generic and special
fibres.

The identification of the generic fibre uses the spectral Yoneda embedding

0 : Sp→ Syn= .

First, let us note that it takes values in the full subcategory of !-invertible synthetic spectra. In fact, we can
explicitly identify which synthetic spectrum some spectral Yoneda embedding 0(3) is the !-inversion of.
Lemma 8.7 ([Pst18] Proposition 4.36). The canonical map

33 → 0(3)

is a connective cover and a !-inversion.

Note that by the canonical map we mean the map of sheaves induced by the levelwise connective cover

33(>) % Σ∞map(> ,3) %Map(> ,3)≥0 →Map(> ,3) % 0(3)(>).

Proof. By the explicit description of the comparison map above as arising from a levelwise connective cover,
we see that its fibre is (−1)-coconnective at every finite =-projective >. Since the t-structure on synthetic
spectra is such that the coconnective part consists precisely of sheaves of coconnective spectra, we deduce
that the fibre of the canonical map above is (−1)-coconnective as a synthetic spectrum. Combining this with
the observation that 33 is connective as a synthetic spectrum, we obtain the result.

To further identify this comparison map with a !-inversion (i.e. the unit transformation associated to
the reflective subcategory of !-invertible spectra) it suffices to note that the fibre of this canonical morphism
vanishes after !-inversion. For this, we note more generally that any %-coconnective synthetic spectrum 3
has trivial !-inversion for % ∈ Z. Indeed, the latter is computed as

!−13 % colim (3 !−→ Σ0,13
!−→ Σ0,23

!−→ · · · , )
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but we see that every Σ0,%3 is (' − %)-coconnective since S0,% = Σ0,−%3S% so that this suspension smashes
with a connective object and shifts the connectivity down by % degrees. Therefore, as % tends to infinity,
the colimit must be infinitely coconnective, hence trivial since the t-structure on synthetic spectra is right
complete. !

This means that there is a factorisation of 0 as
0 : Sp→ Syn=[!−1]→ Syn= .

We now claim that this is an equivalence.
Proposition 8.6 ([Pst18] Theorem 4.37). The induced functor

0 : Sp→ Syn=[!−1]
is an equivalence

Proof. We begin by showing that0 is essentially surjective. For this, let us first note that0 has a right adjoint,
which we will denote 0$. Indeed, since 0 is constructed by sending a spectrum to the presheaf defined by
taking mapping spectra out of finite (=-projective) ergo compact spectra, it commutes with filtered colimits.
To show that it is cocontinuous it suffices to note that it commutes with limits, hence by stability commutes
with finite colimits as well. Since !-invertible spectra form a reflective and coreflective subcategory of Syn=
(e.g. by noting that it fulfils the conditions of smashing localisation in the sense of Definition 4.9), we see
that the factorisation of 0 through !-invertible synthetic spectra is (co)continuous as well. By presentability
of both Sp and Syn=[!−1], it must have the aforementioned right adjoint 0$. Now we claim that given some
!-invertible synthetic spectrum 3, we can recover 3 as the spectral Yoneda embedding of 0$3, or more
specifically that the counit transformation

00$3 → 3
is an equivalence. By general considerations of adjunctions, we see that it suffices to show that the right
adjoint is conservative for this counit to be a natural equivalence. However, since both source and target
are stable, it suffices to show that fibres of morphisms are trivial if and only if their image under 0$ is, i.e.
that if + is a synthetic spectrum, + % 0 if and only if 0$ % 0. To show the only nontrivial implication, we
note that by the adjunction 0 2 0$, the spectrum 0$+ being zero implies that for any finite =-projective >
we have

0 % map(> ,0$+),
% map(0(>), +),
% map(3> , +)),
% Ω∞+(>).

The third equivalence uses the previous observation that 0(>) is the !-inversion of 3>, allowing us to apply
the adjunction between !-inversion and the inclusion of !-invertible synthetic spectra. From the equivalences
above, we see that the spectrum +(>) is at least (−1)-coconnective, so that + is an %-coconnective synthetic
spectrum for % ≤ −1. By the observation made in the proof of Lemma 8.7, we see that it is trivial as a
!-invertible synthetic spectrum. We conclude that

0 : Sp→ Syn=[!−1]
is essentially surjective.

To show that it is fully faithful, we apply a similar reasoning using the universal property of the synthetic
analogue and the !-inversion functor to note that for any spectrum 7 and integer % there is an equivalence

map(S% ,7) % Ω∞Map(S% ,7),
% Ω∞0(7)(S%),
% map(3S% ,0(7)),
% map(0(S%),0(7)).
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This means that 0 is fully faithful when the source of a mapping space is a sphere. However, we noted
above that 0 so cocontinuous, so that any spectrum can be expressed as a colimit of spheres, leading to a
colimit in the first input of the mapping space above, which comes out as a limit, so that 0 is fully faithful
on all of Sp. More accurately, the subcategory of spectra # such that map(# ,−) % map(0(#),0(−)) is closed
under colimits and contains all spheres, hence is all of Sp. !

Remark 8.10. If one restricts to finite =-projective spectra, we see that there is a factorisation

Sp'
= Sp Syn=[!−1].

Syn=
3

0
∼

!−1

so that the functor !−1 is a left Kan extension of the (symmetric monoidal) inclusion of finite =-projective
spectra along the Yoneda embedding (in the form of the restricted synthetic analogue), hence is symmetric
monoidal by the universal property of the Day convolution. Since Syn=[!−1] is a symmetric monoidal
localisation since as is smashing, we see that !−1 restricted to this full subcategory is a symmetric monoidal
inverse to 0, whence 0 is symmetric monoidal as well. We conclude that the equivalence

0 : Sp ∼−→ Syn=[!−1]

is symmetric monoidal.
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9 Synthetic spectra as a deformation
In this final section, we bring together the theory of filtered spectra and deformations as developed along
the course of this work to give a description of synthetic spectra as a deformation. This was first observed
in [BHS19], and we obtain the same result as in op. cit. while working out some terse proofs and fitting
it within our framework of deformations. There are two ways of equipping synthetic spectra with the
structure of a deformation, corresponding to our two notions of deformations. On one hand, one could fit
them into the framework of Section 7.3, which would amount to specifying a collection of graded objects
and a pair of functors to and from spectra. This will prove rather easy, as the construction of synthetic
spectra as well as this definition of deformations are set up so that this is immediate. On the other hand
(after completing at everything at a prime "), when = is MU, we can go the other way around, using
that even MU-based synthetic spectra are equivalent to cellular complex motivic spectra by [Pst18], and
using the description of the latter in terms of modules over a certain algebra object in filtered spectra due to
[Ghe+18]. It is then shown in [Gre21] that these modules in filtered spectra arise as quasicoherent sheaves on
a nonconnective spectral stack that admits the structure of a one-parameter deformation. One then proceeds
to describe the generic and special fibres of this deformation, and notes that they agree with spectra and
the algebraic fibre respectively. The downside of the latter approach is that it is only described for = = MU
and after "-completion, passing through two previously established results relating MU-based synthetic
spectra (up to an additional evenness condition) and motivic spectra. Since we are not in a position to recall
nonconnective spectral algebraic geometry or complex motivic homotopy theory, we will not elaborate on
this deformation picture, and rather focus on the result of Burklund–Hahn–Senger equipping Syn= with
the structure of a deformation. To fully fit this in the framework above, we require that this deformation be
monadic, i.e. that Syn= is generated by its bigraded spheres. In general, the cellular objects–those generated
by the bigraded spheres–only form a full subcategory denoted Syncell

= . Therefore, to describe synthetic
spectra as a deformation one ought to restrict to cellular objects. The following subsection illustrates when
this restriction is trivial.

9.1 Cellularity
As illustrated above, we require our ∞-category of synthetic spectra to be generated by the bigraded
spheres S? ,E . For this reason, we actually restrict to the full subcategory on cellular objects generated by
these. Fortunately, in many cases of interest such as = = F" or = = MU (cf. [Pst18] Section 6.1), the cellular
subcategory is the entire ∞-category of synthetic spectra. Henceforth, when = is MU or F" will no longer
mention this cellular restriction and leave it implicit, as it will be trivial.

To prove this fact, we will primarily follow the short argument given in [Pst18], filling in the references
to more classical work about the algebra of MU∗ as in [CS69]. The fundamental observation is that MU∗ is
a connected Z-algebra, i.e. a positively graded algebra over Z with an augmentation MU∗ → Z inducing an
equivalence in degree zero. This is immediate from the classical description of the graded ring MU∗ as

MU∗ ! Z[8( | ( ≥ 1, |8( | = 2(],

so that the augmentation is given by modding out the 8( ’s and the connectedness is obvious since all of
these live in strictly positive degrees. This has some pleasant algebraic properties.
Lemma 9.1. Since MU∗ is a connected Z-algebra, the functor Z⊗MU∗ − given by base change along the augmentation
map is such that it reflects epimorphisms.

Proof. It is sufficient to show that the functor above detects zero objects. Indeed, one could then apply this
result to the cokernel of a morphism of MU∗-modules ) to conclude that ) is an epimorphism (i.e. has
vanishing cokernel) if and only if Z ⊗MU∗ ) is an epimorphism, one direction being induced by the fact that
tensor products preserve cokernels. Now the proof of the aforementioned statement is rather immediate
from the definition of connectedness. Indeed, suppose that F is an MU∗-module such that

Z ⊗MU∗ F ! 0.
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Letting 5 denote the augmentation ideal of MU∗, i.e. the kernel of the augmentation, one can rephrase the
property above as stating that

0 ! Z ⊗MU∗ F ! coker(5 →MU∗) ⊗MU∗ F ,

so that this is equivalent to the map
5 ⊗ F → F

being an epimorphism. Since MU∗ is connected, the augmentation is an equivalence in degree zero, whence
50 = 0 and (5 ⊗ F)0 = 0 and we conclude that F0 = 0 as well. Now we can induct up, by noting that if F
is concentrated in degrees ≤ ' for some ' ≥ 0, then 5 ⊗ F is concentrated in degrees ≤ ' + 1, one being the
lowest degree in which one can find nonzero elements of 5 13. We conclude that F is surjected upon by a
zero module in every degree ≤ ' + 1, hence is zero by induction. !

An immediate consequence of this is that projective MU∗-modules are quite simple.
Corollary 9.1. Any projective MU∗-module is free, so the two conditions are equivalent.

Proof. Let F be a projective MU∗-module, then it can be written as a direct summand of a free module

F ⊕ B ! +.

Now the base change along the augmentation respects this coproduct, and since MU∗ gets sent to Z, we see
that Z⊗MU∗F is a direct summand of a free Z-module, hence projective itself ergo free. If we let {G( | ( ∈ ;}
be a basis for this free Z-module, we obtain a basis for the free MU∗-module MU∗ ⊗Z Z ⊗MU∗ F. Now define
an MU∗-linear map from the latter back down to F by sending some basis element 1 ⊗ G( to the element
*( in F such that 1 ⊗ *( represents the class of G( in Z ⊗MU∗ F. It is clear that this is well defined, and an
epimorphism after base change along the augmentation. Using the lemma established above, we conclude
that it is an epimorphism. By projectivity of F it has a section, which becomes an equivalence after base
change, whence by right cancellation we conclude that this map is an isomorphism and F is free. !

When these MU∗-modules arise from finite spectra, we can interpret the structure above as being a
statement about MU-homology and integral homology. This is captured in the following proposition.
Proposition 9.1. For 3 a finite spectrum, the following are equivalent:

1. The module MU∗3 is projective over MU∗.
2. The module MU∗3 is free over MU∗.
3. The integral homology Z∗3 = H(3;Z) of 3 is free over Z.

Further, the rank of MU∗3 over MU∗ is equal to the rank of H∗(3;Z) over Z.

Proof. The equivalence between the first two points is an immediate consequence of our previously estab-
lished corollary. The equivalence between the second and third items follow from a more careful analysis
of the Atiyah–Hirzebruch spectral sequence for complex cobordism. Note that this is given by

=2 = H∗(3; MU∗) =⇒ MU∗3 .

Now MU∗ is torsion-free as a Z-module from its explicit description, so that the Künneth spectral sequence
computing the =2-term collapses, and it is given by the graded tensor product

=2 = H∗(3;Z) ⊗MU∗.

By our assumption on the integral homology of 3, we see that this is a finite free MU∗-module, so that
the lack of torsion causes the Atiyah–Hirzebruch spectral sequence to collapse at the =2-page, whence we

13The proof we give here holds for any connected algebra over any ground ring, so that the degree one shows up, but in our case it
is clear that 5 is generated in even degrees so that this can be strengthened to degree two.
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conclude that MU∗3 is simply H∗(3;Z) ⊗MU∗, hence is free and of the same rank as the integral homology
of 3.

In the other direction, assuming that MU∗3 is free, we want to show that H∗(3;Z) does not contain any
torsion. If a torsion class existed in the latter, it would survive to an infinite cycle, hence lie in the image of
the edge map

Z ⊗MU∗ MU∗3 → H∗(3;Z),
where we have tensored the target up to Z by the left adjointness of the former to the forgetful functor.
We will not elaborate on the details of this classical result, and refer to the construction and analysis of the
bordism spectral sequence in [CS69] for a description of this process. At this point, recall that MU∗ is a
connected Z-algebra, so that tensoring over the augmentation induces a rational equivalence

Q ⊗Z Z ⊗MU∗ MU∗3 ! H(3;Q).

Now MU∗3 was assumed to be a free MU∗-module, so that Z ⊗MU∗ MU∗3 is a free Z-module and embeds
into its rationalisation. Since the hypothetical torsion class is obviously trivial in H(3;Q), we pull back along
the two injections to see that it was trivial in Z ⊗MU∗ MU∗3 before applying the edge map, whence it is zero.
We conclude that H∗(3;Z) has no torsion, hence is free. !

Equipped with this equivalence, we can return to the world of synthetic spectra to show that MU-
synthetic spectra are cellular.
Lemma 9.2. Consider the Adams type homology theory given by MU. Then the inclusion

Syncell
MU → SynMU

is an equivalence, where the source is the full subcategory on cellular objects.

Proof. Recall that SynMU is generated by objects of the form 3> for > ∈ Sp'
MU. Therefore, it is sufficient to

show that these are cellular in this case. The proof can be constructed by induction on the rank ' of H∗(>;Z)
over Z. Indeed, since the former is free, we find a finite projective MU-module of rank ' − 1 by letting D be
the cofibre of the map

Sℓ → >

corresponding to the inclusion of a single free summand into Hℓ (>;Z) under the Hurewicz isomorphism,
where ℓ is the lowest index in which the finite projective MU-module > has nontrivial singular homology.

It then suffices to show that this cofibre sequence lifts to synthetic analogues. This will be the case if the
induced map

MU∗> →MU∗D
is a surjection by the characterisation of the Grothendieck topology on Sp'

MU established in the definition of
synthetic spectra. This is immediately true since both terms are free MU∗-modules obtained by tensoring
the integral homology with MU∗, and >′ was obtained by quotienting out a free summand. We conclude
that 3> is an extension of 3D of rank ' − 1 and a synthetic sphere 3Sℓ = Sℓ ,ℓ . !

Apart from MU, there is great computational interest in synthetic spectra based on the Eilenberg–
Maclane spectra F" . In fact, F"-synthetic spectra are cellular as well by a slight generalisation of the proof
above where we once again split off spheres using the Hurewicz isomorphism.
Lemma 9.3. Consider the Adams type homology theory given by F"; Then the inclusion

Syncell
F"
→ SynF"

is an equivalence.
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Proof. In analogy with the proof of Lemma 9.2, we only need to show that the generators 3> with > ∈ Sp'
F"

are cellular. Since such a spectrum > is finite, we can fix some index ℓ in which its lowest nontrivial homology
group lives. In that case, the Hurewicz isomorphism once again gives us an isomorphism

Hℓ (>;Z) ! #ℓ >.

Now we know that H∗(>; F") is finite projective ergo free over F" , giving us an isomorphism

Hℓ (>; F") ! Hℓ (>;Z) ⊗Z F" .

This means that the integral homology of > must also be a free Z-module, say of rank C equal to the rank of
its F"-homology. We can then apply the same procedure, where we view the inclusion of a summand into
Hℓ (>;Z) as representing a map of spectra

Sℓ → > → D

with cofibre D ∈ Sp'
F"

, whose rank over Z ergo F" is C − 1. Further,

I∗(>; F")→ I∗(D; F")
is a surjection by construction. This means that the associated sequence of synthetic analogues

3Sℓ → 3> → 3D

is a cofibre sequence. We conclude that all generators of SynF"
are cellular. !

9.2 The deformation
We will now express Syn= as a deformation of homotopy theories, under the assumption that we have either
restricted to cellular objects in Syn=, or that = = F" or MU, whence this restriction would be trivial. We
have previously shown that geometric deformations and BHS deformations are both equivalent, so we can
choose one model to apply. In fact, expressing Syn= in the latter model already uses a pretty fundamental
result about this deformation, namely the identification of the generic fibre, in its construction, so we opt
for the geometric route.
Theorem 9.1. The ∞-category of synthetic spectra admits the structure of a deformation, i.e. a noncommutative
stack over A1/G! , which is further Z-plurigenic.

Proof. This means that we want to endow Syn= with the structure of an SpFil-algebra, which by the obser-
vations above can be encoded in a symmetric monoidal left adjoint

SpFil → Syn= .

Once again, as in the comparison of the two models of deformations, we see that this arises simply from a
symmetric monoidal functor

Z→ Syn= .
We let this functor be the one picking out the synthetic sphere S0,% associated to an integer %. This is
functorial by virtue of the comparison maps

S0,% !−→ S0,%+1 ,

and is symmetric monoidal by virtue of the identity

S0,% ⊗ S0,! % S0,%+! .

As is standard by now, we conclude that this endows Syn= with the structure of an SpFil-algebra in PrL
St.

Finally, we would like to show that it is Z-plurigenic to apply the filtered Schwede–Shipley theorem. For
this, note that the enriched mapping object MapZ(S0,0 ,−) is given by the filtered spectrum

MapZ(S0,0 ,3)★ = MapZ(S0,★,3)
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with structure morphisms induced by (precomposition with) !. This follows immediately from the con-
struction of these objects as right adjoints to the symmetric monoidal left adjoint picking out the synthetic
sphere and its twists. Now note that for any ? ,E we have

S? ,E % S? ,0 ⊗ S0,E % Σ?3S ⊗ S0,E % Σ?S0,E .

Since we assumed that Syn= was cellular by restricting our choices of = or restricting to the cellular
subcategory, we see that it is generated under colimits by the S? ,E or equivalently under colimits and
suspensions by the S0,E . Further noting that all these twists are dualisable ergo compact, we conclude that
MapZ(S0,0 ,−) is a conservative functor and Syn= is Z-plurigenic as an SpFil-algebra. !

For completeness, we will also illustrate what happens when one expresses Syn= as a BHS deformation,
following the sketch given in [BHS20]. We proceed to apply Definition 7.3 to the case of synthetic spectra.
Note that Syn= is always an object of CAlg(PrL

St), so that it admits an essentially unique unit map from Sp
which is a symmetric monoidal left adjoint. This functor is denoted

* : Sp→ Syn= .

Secondly, we need a symmetric monoidal left adjoint from Syn= back down to Sp. This is provided by the
!-inversion functor. Indeed, recall that the full subcategory of !-invertible spectra was equivalent to Sp itself
via the spectral Yoneda embedding. Therefore, the !-inversion functor, which is a symmetric monoidal left
adjoint, can be extended to a symmetric monoidal left adjoint

Re : Syn=
!−1
−−→ Syn=[!−1] % Sp.

Since our base category to be deformed was Sp, we see that the composite Re ◦* is the identity for universal
reasons.

Next, we construct our graded dualisable objects, i.e. the twists of the identity. These are then given by
the spheres S0,% for % ∈ Z It is an immediate consequence of Lemma 8.7 that these all realise to the sphere
spectrum S ∈ Sp, whence they are contained in the kernel of Pic0 Re. Further, this induces an equivalence
on mapping spaces by Proposition 8.2, which tells us that for % ∈ Z and ' ≥ 0 we have

map(S0,% ,S0,%+') % map(S0,0 ,S0,'),
% map(3S,Σ−'3S'),
% Ω∞+'3S'(S),
% Ω'map(S,S'),
% map(S,S).

This structure allows us to define an SpFil-algebra structure on Syn= using the symmetric monoidal left
adjoint induced by the symmetric monoidal functor S0,★ : Z→ Syn= as described at length in our discussion
of deformations. Further, to check the analogue of the Z-plurigenicity condition, we see that this is once
again equivalent to requiring that the spheres S0,% and their suspensions generate Syn= by the cellular
assumption made at the beginning of this section.
Remark 9.1. It is apparent from the discussion above that synthetic spectra admit the structure of a
deformation with generic fibre

GF(Syn=) % Syn=[!−1] % Sp.
Now the special fibre can also be computed using the framework of [Pst18], and one obtains

SF(Syn=) %Mod(Syn=;#!) % Stable=∗= ,

where the latter is Hovey’s stable derived category of =∗=-comodules, an ∞-categorical thickening of the
derived category of the abelian category of comodules over the Hopf algebroid =∗=. Since we do not use
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the explicit description of the special fibre in this work, we will not elaborate on this. However, it is of
great theoretical significance to the theory of synthetic spectra, since it really quantifies that statement that
synthetic spectra are a deformation encapsulating both the homotopy theory of spectra (the generic fibre
Sp) and the algebra of the Adams type homology theory = (the special fibre Stable=∗=).
Remark 9.2. As is apparent from the discussion above, since a BHS deformation requires the datum of
its generic fibre in the definition, we see that we needed the construction of the realisation or !-inversion
functor (as well as the identification Syn=[!−1] % Sp to define this deformation.

Having established this monadic adjunction, it therefore remains to identify the algebra object "S0,0 in
filtered spectra. Unfortunately, this does not always have a simple description. Indeed, if we unravel the
definition of ", we see that its %-th part is given by

"3% %Map(S0,% ,3)

for any synthetic spectrum 3. This right adjoint admits a very similar construction in [Ghe+18] in the world
of "-complete cellular complex motivic spectra, and in op. cit. this right adjoint is referred to as the motivic
homotopy groups functor. Indeed, it is clear that the mapping spectra in the formula for " essentially
compute the synthetic stable homotopy groups, or (equivalently) the motivic stable homotopy groups. We
therefore do not expect them to have a simple description on the nose. More tractable however, is the
synthetic spectrum 3= and its iterated smash powers. Or more generally, synthetic analogues of spectra of
the form 3 ∧ =∧'

Proposition 9.2. Letting " denote the right adjoint

" : Syn= → SpFil

of the deformation structure map, we can explicitly describe its value on 33 ⊗ 3=' as

"(33 ⊗ 3=∧') % !≥★3 ∧ =∧' ,

where !≥★3 ∧ =∧' is the filtered spectrum obtained as the Whitehead tower of 3 ∧ =∧' .

Proof. First, let us construct a comparison map for any spectrum 3. Note that by the general description
of enriched mapping objects in SpFil-linear categories, we can describe the %-th component of "33 as the
mapping spectrum

"33% %MapZ(S0,0 , 33)% %Map(S0,% , 33).
Now the realisation functor is a left adjoint ergo exact, so that it induces a map on mapping spectra of the
form

Re : MapSyn=
(S0,% , 33)→MapSp(ReS0,% ,Re 33) %Map(S,3) % 3 .

In fact, since the structure morphisms in the filtered spectrum "33 are induced by precomposition with the
limit-colimit comparison map, we see that this extends to a map of filtered spectra. Indeed, we previously
established that the realisation functor sends these connecting morphisms to the identity on S, which
precisely induces the structure maps in the constant filtered spectrum CsMap(S,3) % Cs3. We conclude
that there exists a comparison map

"33 → Cs3
of filtered spectra. To show that it induces the map in our proposition, we must take a closer look at the
connectivity of the source and apply the universal property of cover functors. Let us fix some index % and
consider the spectrum "33% . Note that it is given by the mapping spectrum Map(S0,% , 33) which precisely
encodes the synthetic homotopy groups of 33, i.e.

#∗Map(S0,% , 33) % #∗,%33 .

Now the latter homotopy groups admit an explicit description in the case that 3 is an =-module. In that
case, one can combine Propositions 8.2 and 8.3:
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• For any spectrum 3 with synthetic analogue 33, the synthetic homotopy groups #∗,%33 agree with
#∗3 in positive Chow degree, i.e. for ∗ ≥ %.

• For any homotopy =-module F with synthetic analogue 3F, the synthetic homotopy groups #∗,%3F
vanish in negative Chow degree, i.e. for ∗ < %.

In particular, we understand the synthetic homotopy groups of F in any range. If we let F be given by the
homotopy =-module 3 ∧ =∧' , we obtain the explicit description

#∗Map(S0,% , 33 ∧ =∧') ! #∗,%33 ∧ =∧' !
{
#∗3 ∧ =∧' , ∗ ≥ % ,
0, ∗ < %.

Note that we liberally apply the result of Lemma 8.5 to see that there is an equivalence

3(3 ∧ =∧') % 33 ⊗ 3=∧' .

Now it is clear that the right hand side depicts the homotopy groups of the cover !≥%3 ∧ =∧' , almost per
definition of the latter. Further, note that the comparison map was induced by realisation, which is precisely
what gives us the equivalence above. We conclude the following:

• By inspection of the homotopy groups of the source at every filtration level, the comparison map

"33 ∧ =∧' → Cs3 ∧ =∧'

factors through the canonical cover

"33 ∧ =' → !≥★3 ∧ =∧' → Cs3 ∧ =∧'

simply because the source is %-connective in filtration degree %.
• By closer inspection of the homotopy groups, we note that what survives in degree ≥ % is precisely

isomorphic to the homotopy groups of !≥%3 ∧ =' , as induced by the comparison map. We therefore
conclude that the factorisation above is actually an equivalence

"33 ∧ =∧' ∼−→ !≥★3 ∧ =∧'

since equivalences in filtered spectra are detected levelwise in spectra, where they are detected by
homotopy groups.

!

Remark 9.3. Note that the natural filtration going between the degrees % on the synthetic homotopy groups
#∗,%3 is precisely induced by the map

! : S0,%−1 → S0,% .

Therefore, it is customary for a homotopy =-module F to write

#∗,∗3F ! #∗F ⊗ Z[!],

using our precious observations on the structure of these homotopy groups. In particular, we see that

3=∗,∗ ! =∗[!], 3=∗,∗3= ! =∗=[!].

This tells us that (3=∗,∗ , 3=∗,∗3=) is also a flat Hopf algebroid. In fact, the yoga of Adams spectral sequences
in the synthetic world can quite often be reduced to computations over a variation of the undeformed Hopf
algebroid (=∗ , =∗=) in which a polynomial variable ! of degree one is adjoined to both. This picture is of
great computational value, and also illustrates how filtrations arise naturally in the synthetic world, with
this ! parameter precisely inducing the shifts.
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The reason why the functor " does not admit a general description in all cases, is that it contains
all information about synthetic spectra and their homotopy groups. Indeed, we saw from the explicit
description in terms of mapping spectra that the filtered spectrum "3 associated to a synthetic spectrum
3 encapsulates the bigraded homotopy groups of the latter. We therefore do not expect to be able to give
an explicit description of "S0,0 at all. However, by the above description of the values of " on synthetic
analogues of homotopy =-modules, we can approach the synthetic sphere spectrum in a slightly more
satisfactory way. The strategy is simply to resolve the synthetic spectrum S0,0 along a 3=-based Adams
resolution. The latter should allow us to describe the completion S0,0∧

3= . But by the results of the previous
section, this is none other than the !-completion S0,0∧

! . In conclusion, the !-complete synthetic sphere
spectrum is exactly approximated by the resolution of the synthetic sphere spectrum along the tractable
synthetic analogues (3=)⊗' % 3=∧' .

In fact, we know that !-completion agrees with 3=-completion for all synthetic analogues by Proposition
8.5. by inspection of the 3=-based Adams tower. Therefore, we will be able to realise the construction
sketched above for more general synthetic analogues 33.
Theorem 9.2. Let 3 be a spectrum and 33 its synthetic analogue. Then there is an equivalence of filtered spectra

"(33∧! ) % Déc(!≥★;=)(3).

Proof. By Proposition 8.5, we can identify the left hand side with

"(33∧! ) % "(33∧3= ).

Now the synthetic spectrum in this expression is obtained as the 3=-nilpotent completion of 33, i.e. the
totalisation of the tensor product of 33 with the cobar resolution of 3=, so that

"(33)∧3= % "Tot(33 ⊗ 3=⊗•) % Tot"(33 ⊗ 3=⊗•).

Note that we are allowed to swap the right adjoint "with the limit Tot = limΔ. Since 3 is symmetric monoidal
when restricted to finite =-projective spectra in at least one variable, we can rewrite the latter as

"(33 ⊗ 3=⊗•) % "3(3 ∧ =∧•) % !≥★3 ∧ =∧• ,

where we used the key result from Proposition 9.2 If we now look at the totalisation, we obtain the desired
equivalence

"(33∧! ) % Tot(!≥★(3 ∧ =∧•)) =: Déc(!≥★;=)(3).
!

Remark 9.4. This result ought to be seen as an analogue to Proposition 6.8 in [Ghe+18], where Gheorghe–
Isaksen–Krause–Ricka construct (everything is implicitly "-completed) a functor

Γ : Sp→ SpFil : 3 ↦→ Tot(!≥2★3 ∧MU∧•),

and identify ΓS with ΩS0,0, where S0,0 is the monoidal unit in Spcell
C , and Ω is the right adjoint

Ω : Spcell
C → SpFil : 0 ↦→Map(,0,★,0)

called the motivic homotopy groups functor, in analogy with our functor ". In fact, since there is an equivalence
(still implicitly "-completed)

Spcell
C % Synev

MU ,

we see that these two results are closely related. Recent work of Hahn–Raksit–Wilson in [HRW22] uses this
equivalence to construct a synthetic analogue functor

3 : Sp→ Spcell
C
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whose value on a bounded below E∞-ring ; with even complex bordism ring can be shown to be given by
a similar formula

3(;) % filev
★ ; % Tot(filev

★ ; ∧MU∧•),
where filev

★ is the even filtration on E∞-rings, defined as the right Kan extension of the tower functor !≥2∗
from even E∞-rings to all E∞-rings. There exists a relative version of this even filtration, allowing them to
consider a similar formula as above for module F relative to an E∞-ring ;.
Remark 9.5. Although one really can not get rid of the !-completion, the latter being essential to allow
us to approximate a synthetic analogue by its Adams filtration, we do recall that !-completeness of 33
is equivalent to 3=-nilpotent completeness of 33, which is further equivalent to =-nilpotent completeness
of 3. While the latter assumption is not simpler, we do know for example that any connective spectrum
is MU-nilpotent complete. This is a classical result central to the study of the Adams–Novikov spectral
sequence, as reviewed in [Rav84]. In particular, since the sphere spectrum is connective, we see that in
MU-synthetic spectra

"3S % "3S∧MU % "3S∧3MU % "3S∧! % Déc(!≥★; MU)(S).
At this point, we must warn the reader than one primarily cares about even synthetic spectra based on
MU for their comparison with cellular complex motivic spectra. In that case, we only need to add the (in
this case rather obviously true) assumption that MU∗S be even, so that its image under the even synthetic
analogue is modeled by the filtered spectrum

Déc(!≥2★; MU)(S)
that appears in [Ghe+18]. This remark about MU-nilpotent completeness of connective (or even bounded
below) spectra ergo !-completeness of their synthetic analogues, along with the comment above about even
gradings is precisely the condition that appears in Hahn–Raksit–Wilson’s formula in 9.4.

As previously stated in the motivation for this discussion, we see that one can plug in 3 = S to obtain
a description of the !-complete unit in synthetic spectra. In particular, this gives us an explicit formula for
!-complete synthetic spectra in terms of filtered spectra.
Theorem 9.3. The subcategory of !-complete synthetic spectra Syn=∧! can be described as

Syn=
∧
! %Mod(SpFil∧

! ; Déc(!≥★;=)(S)),
where the algebra object in the latter is the décalage defined in 5.1.

Proof. This is a rather immediate consequence of the discussion above. Indeed, by the Z-plurigenicity result
for the deformation structure on synthetic spectra, we had an equivalence

Syn= %Mod(SpFil; "S0,0).
Now note that the adjunction - 2 " inducing this equivalence preserves the deformation parameter ! on
both sides. Indeed, it is clear that

-(!) : -1(−1) = S0,−1 → -1 = S0,0

is the ! operator from synthetic spectra, and conversely

"(!) : "S0,−1 = Map(S0,★,S0,−1)→ "S0,0Map(S0,★,S0,0)
is the shift in filtered spectra by the identification

Map(,0,★, ,0,−1) %Map(,0,★+1 , ,0,0).
We conclude that the equivalence between synthetic spectra and modules in filtered spectra restricts to an
equivalence on !-complete subcategories on both sides. In particular, we obtain

Syn=
∧
! %Mod(SpFil∧

! ; "S0,0∧
! ) %Mod(SpFil∧

! ; Déc(!≥★;=)(S)),
where the last line uses our previous computation of the synthetic homotopy groups of !-complete synthetic
analogues. !



9 SYNTHETIC SPECTRA AS A DEFORMATION 86

Remark 9.6. Recall that there was a symmetric monoidal equivalence K(Sp) % SpFil∧
! . In particular, this

allows us to describe !-complete synthetic spectra not just in terms of a filtered model but even a cochain
complex model. The equivalence was given in one direction by

- : SpFil∧
! → K(Sp) : 3 ↦→ Σ∗gr∗3 .

Specifically, one can compute its value on Déc(!≥★;=)(S) using

gr%Déc(!≥★;=)(S) % Déc(!≥★;=)(S)%/Déc(!≥★;=)(S)%+1 ,
% cof(Tot(!≥%+1=∧•)→ Tot(!≥%=∧•)),
% Tot(cof(!≥%+1=∧• → !≥%=∧•)),
% Tot(Σ%I#%=∧•).

Indeed, by stability we can commute the limit Tot with the cofibre sequence, We then note that the associated
graded of the Whitehead tower is given by (shifts of (Eilenberg–MacLane spectra on)) its homotopy groups.
These assemble to a cochain complex in spectra of the form

-Déc(!≥★;=)(S) % Σ∗Tot(Σ%I#%=∧•).

We conclude that there is a further equivalence

Syn=
∧
! %Mod(K(Sp);Σ∗Tot(Σ%I#%=∧•)).

Now that we have stated the main result of our discussion of synthetic spectra as a deformation, namely
an identification of the !-complete subcategory using an explicit filtered model, let us quantify how much
of this can be worked back up to describe all of Syn=. For this, we will use our discussion of recollements
to note that the deformation structure on Syn= induces a recollement into the !-invertible and !-complete
parts of Syn=, of the form

Syn=[!−1] Syn= Syn=∧! .

By the results of this section and the previous one, we can identify

Syn=[!−1] % Sp, Syn=
∧
! %Mod(SpFil∧

! ; Déc(!≥★;=)(S)).

By our discussion of recollements associated to a dualisable homotopy associated algebra object, we see that
this recollement is symmetric monoidal. Further, recall that the reconstruction formula for recollements in
terms of lax limits gives a symmetric monoidal equivalence. This gives us the final result
Corollary 9.2. There is a symmetric monoidal equivalence of∞-categories

Syn= %Mod(SpFil∧
! ; Déc(!≥★;=)(S)) ×!−1 ,Sp,? SpΔ1

.
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